

Available online at www.sciencedirect.com

Physica C 450 (2006) 76-82

www.elsevier.com/locate/physc

Trajectory-property relationships in MOD-derived YBCO films

D.E. Wesolowski, M. Yoshizumi, M.J. Cima *

Massachusetts Institute of Technology, 77 Massachusetts Ave #12-011, Cambridge, MA 02139, United States

Received 2 August 2006; accepted 24 August 2006 Available online 12 October 2006

Abstract

A study of the physical and chemical changes during processing in MOD-derived YBCO films was performed. Fully processed films were 70–85% of theoretical density. The sintering rate increased substantially in the compositional range F/Ba = 1.8-1.5. The activation energy for sintering decreased above a P(H₂O) dependent threshold temperature. XRD indicated this temperature/composition threshold also corresponded to YBCO nucleation, suggesting *ex situ* YBCO forms in contact with a melt. The ramp rate and P(H₂O) were used to control F/Ba trajectories, which were correlated to performance. The nucleation of YBCO was strongly dependent on processing conditions. Nucleation temperature was varied by at least 60 °C in the study. The optimal YBCO nucleation temperature in the 300–800 nm films was around 725 °C. *a*-axis grains dominated the microstructures of films where YBCO nucleated at <700 °C. Large second phases, but no *a*-axis grains, were found when the nucleation temperature was >750 °C.

PACS: 81.15.Lm; 81.10.Jt; 74.78.-w

Keywords: Metal-organic deposition; YBCO superconductor; TFA-MOD process

1. Introduction

Metal-organic deposition (MOD) is a proven method for the preparation of $YBa_2Cu_3O_{7-x}$ (YBCO) thin-films and is used in pilot scale production of coated conductors [1]. The mechanism by which precursor film is converted to YBCO has, however, never been fully described due to the complexity of the process. The following overall reaction has been suggested:

$$2BaF_{2} + 2CuO + 0.5Y_{2}Cu_{2}O_{5} + 2H_{2}O_{(g)}$$

= YBCO + 4HF_(g) (1)

Reaction (1) does not describe a specific reaction in the system, but rather the overall conversion of precursors to the YBCO product. This reaction occurs in steps during heat treatment [2,3]. Recent investigations have suggested that reaction (1) poorly represents the actual conversion process. The overall fluorine-to-barium (F/Ba) ratio of films provides insight into the compositional changes that occur during processing. F/Ba ratio measurements by Yoshizumi, et al. showed that precursor films following decomposition have about three times as much fluorine in the film as barium (F/Ba \sim 3), indicating some fluorine is bound in the film as YF₃ [2].

MOD precursor films undergo significant chemical changes before YBCO nucleates. Analysis of F/Ba ratio and P(HF) over the film during processing has revealed the decomposition of fluorides occurs in steps. YF₃ is thermodynamically less stable than BaF₂ and decomposes completely before BaF₂ decomposition begins. YF₃ decomposition results in removal of Y from a BaF₂ solid solution [2]. The decomposition product is unknown, but Y₂Cu₂O₅ phase is detected in XRD just before nucleation of YBCO [2]. Y₂O₃, Y(OH)₃ [4], and yttrium oxyfluoride [5] have also been proposed as reaction products. BaF₂ begins to decompose without the formation of YBCO [2]. A number of reactions could possibly represent BaF₂ decomposition in the region of 2.0 > F/Ba > ~1.5. The most likely, as estimated

^{*} Corresponding author. Tel.: +1 617 253 6877; fax: +1 617 258 6936. *E-mail address:* mjcima@mit.edu (M.J. Cima).

^{0921-4534/\$ -} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2006.08.011

from P(HF) measurements, is the formation of BaCuO₂[2]. A Ba($O_x F_y$) superstructure has been detected in e-beam derived films, and may form in MOD films as well [6,7].

A transient liquid phase is speculated to exist during processing of ex situ films. Crystallites of BaF₂ phase material of up to 20 nm have been observed in TEM images of films quenched near the nucleation of YBCO, and these crystallites actually grow during heating as more Y is removed from solution [8]. Growth rates of YBCO, however, exceed 5 nm/s [9]. The large chemical inhomogeneity in precursor films indicates a phase with high cation mobility, such as a melt, is necessary to obtain the required growth rates. The chemical makeup or even the presence of a melt has never been established. McIntryre proposed the presence of a cuprate melt, some of which are known to exist at low-temperatures and have a $P(O_2)$ dependence [8]. Yoshizumi, et al. noted the additional fluorine in MOD-films could promote transient fluorine-rich melts during processing [2]. Solovyov, et al., while working with e-beam derived BaF₂ containing films, found a fluorine-free amorphous layer at the YBCO growth interface [10]. It was suggested that this was a quenched fluorine-free melt [4].

The study of physical changes in ex situ films has been mostly limited to microstructure studies. Thickness changes of MOD-derived films were monitored in this study during high-temperature processing. Cross-sectional SEM studies have previously shown shrinkages in excess of 50% from decomposed to final film thicknesses [9,11]. Other researchers have suggested this is due to the presence of porosity in the decomposed film [8]. TEM and XRD studies of the films have shown that the decomposed films are nanocrystalline in nature, consisting of small crystals of BaF₂ and Y₂Cu₂O₅ in a mostly amorphous and porous matrix [9,8]. The small particle size in the precursor film and the initial porosity means there is a large driving force for shrinkage by sintering. Shrinkage also occurs because film fluorine is replaced with half as much oxygen during conversion. The solid products of Reaction (1) have a 20% smaller volume than the solid reactants. Small thickness changes occur due to substrate reactions [12]. Sintering and conversion should account for most film thickness change.

Physical and chemical changes in MOD-derived films during ramping and annealing are reported in this paper. The physical changes observed included the change in film thickness and surface morphology of the films. The overall F/Ba compositional trajectory of the films and XRD phase relations were used to deduce chemical changes. Comparisons between physical and chemical changes were used to infer the presence of a fluorine-free melt that is associated with the nucleation and growth of YBCO. The relationships between trajectories and performance were explored.

2. Experimental

Samples were prepared according to well-described procedures for the production of MOD YBCO [11]. Solutions of two different concentrations were used to provide films of two thicknesses following decomposition (~1.1 µm and ~0.7 µm). The higher concentration solution was prepared by allowing solvent to evaporate from the more dilute solution. Several substrates were used, including bare (100) aligned $Zr_{0.87}Y_{0.13}O_2$ (YSZ), YSZ coated with solutiondeposited epitaxial CeO₂, and bare (110) aligned LaAlO₃ (LAO). Details of the solution deposition process for epitaxial CeO₂ can be found elsewhere [13]. Samples were cleaned before spin-coating and coating was performed for 120 s at 2000 rpm (for thick films) or 4000 rpm (for thin films) in a particle containment hood. A low-temperature heat treatment described elsewhere [11] was used to decompose samples following this spin-coating.

The edges of the samples were removed after decomposition using a razor blade. Film areas following edge removal were on average $5.32 \times 10^7 \,\mu\text{m}^2 \pm 6\%$, or approximately 7.5 mm × 7.5 mm. Bridges were also scribed with a razor blade into samples designated for current testing. Debris from film removal was removed using a jet of dry nitrogen.

Film thickness measurements were performed using a Tencor P10 profilometer. Six measurements were performed on each sample, two in the center of the edges and four closer to each corner. Profilometer measurements were taken at a rate of 100 Hz and speed of 20 μ m/s, giving an approximate spacing of 200 nm between measurements. Typical scan lengths were \sim 700 µm with 100–300 µm on the film itself. The starting corner for the thickness measurement was marked with a scratch in the film so approximately the same positions could be measured after the high-temperature heat treatment. The profilometer accuracy was checked by testing a VLSI thickness standard of 4500 Å over the whole range of dates relevant to this study. The standard deviation of these measurements was 1.31% of the standard thickness. The error determined from 10 replicates of one experimental condition was 1.88%.

Conversion heat treatments were performed in a specially designed tube furnace with silica rails that allowed a silica setter plate with sample to be pushed into and out of a hot furnace. Sample temperatures were recorded by a thermocouple placed in a sleeve on the setter plate. The study of near-equilibrium film shrinkage behavior used a 5 °C/min ramp with a 1 h annealing at temperature followed by furnace cooling (approx. 5 °C/min above 500 °C). Heat treatments for other tests were modifications of heat treatment procedures that produced high $J_{\rm c}$ films [11]. Fig. 1 illustrates the conversion heat treatment profiles. The initial ramp rate (to 500 °C) was 25 °C/min. The ramp rate between 500 and 760 °C was varied in the experiment from 5 °C/min to 25 °C/min. Samples were annealed at 760 °C for 2.25 h. All heat treatments were performed under 1 atm total, 100 ppm O_2 /balance N_2 , process gas flowing at 3 SLM through a 53 mm diameter quartz furnace tube. Three gas switches were made. The first switch occurred after 10 min at 760 °C and changed the moisture content of the process gas from the experimental

Download English Version:

https://daneshyari.com/en/article/1820474

Download Persian Version:

https://daneshyari.com/article/1820474

Daneshyari.com