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Abstract

Phase and amplitude stabilization of the fields in superconducting cavities in the presence of ponderomotive effects and microphonics
was one of the major challenges that had to be surmounted in order to make superconducting rf accelerators practical. This was of par-
ticular concern in low-velocity proton and ion accelerators since the beam loading was often negligible, but was usually not relevant in
electron accelerators since the beam loading was often high and the gradients low. More recent or future applications of electron linacs—
for example JLab upgrade, energy recovering linacs (ERLs)—will operate at increasingly higher gradients with little beam loading, and
the issues associated with microphonics and ponderomotive instabilities will again become relevant areas of research. This paper will
describe the ponderomotive instabilities and the conditions under which they can occur, and review the methods by which they, and
microphonics, can be overcome.
� 2006 Elsevier B.V. All rights reserved.
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1. Historical background

Ponderomotive instabilities were first observed in nor-
mal conducting resonators in the 1960s in the Soviet Union
[1–3]. In that work stability conditions were derived using
energetic arguments, comparing the rate of transfer of
energy from the electromagnetic mode to the mechanical
mode and the rate of dissipation of energy of the mechan-
ical mode. The analysis was valid when the decay time of
the electromagnetic mode was much less that the period
of the mechanical mode (sXl� 1), or when the rate of
transfer of energy was very high.

In the late 60s early 70s, as part of the R&D activities at
Karlsruhe toward the development of a superconducting
proton accelerator, Schulze [4,5] extended the analysis of
ponderomotive instabilities in generator-driven systems,
with and without phase and amplitude feedback, to arbi-
trary sXl, which would be appropriate for superconducting
structures. His analysis was based on control system meth-

ods (Laplace transforms, transfer functions, etc.). That
work made first mention and demonstrated the effective-
ness of using ponderomotive effects to damp mechanical
modes.

In the mid-70s, as part of the R&D activities at Caltech
toward the development of a heavy-ion superconducting
accelerator, Delayen [6,7] analyzed the behavior of resona-
tors operated in self-excited loops, with and without phase
and amplitude feedback, in the presence of ponderomotive
effects and microphonics. That analysis was also based on
control systems methods and made use of stochastic anal-
ysis to quantify the performance of the feedback systems.
That work also introduced the I/Q control method as well
as microprocessor-based control systems for superconduc-
ting cavities.

2. The adiabatic theorem and superconducting cavities

An important theorem of classical mechanics states that
for periodic system whose properties change slowly with
time (as defined by a slowness parameter e) the action
J = »pdq changes more slowly than a power of e. When
applied to harmonics oscillators—where the action is U
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the ratio of energy and frequency—then U
x changes more

slowly than any power of e ¼ 1
x2

dx
dt if the frequency changes

smoothly, i.e. it is an adiabatic invariant to all orders [8].
The dimensionless parameter e is the relative change in fre-
quency during one radian. Since in the case of supercon-
ducting cavities it would be difficult to change the
frequency significantly during one radian, the action U

x
can be assumed to be constant and, in particular, any rela-
tive change in frequency is equal to any relative change in
energy content: Dx

x ¼ DU
U .

In the quantum picture, this would mean that the system
stays in the same eigenstate and that the number of pho-
tons remains constant (U = N�hx).

The energy content in a resonator is given by

U ¼
Z

V

l0

4
H 2ð~rÞ þ e0

4
E2ð~rÞ

h i
dv ð1Þ

and the change in energy content is equal to the work done
by the radiation pressure:

DU ¼ �
Z

S
dS~nð~rÞ �~nð~rÞ l0

4
H 2ð~rÞ � e0

4
E2ð~rÞ

h i
ð2Þ

where~nð~rÞ and~nð~rÞ are the normal vector and the displace-
ment vector, respectively, at location~r.

The relative change in frequency is then given by

Dx
x
¼ �

R
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4
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4
E2ð~rÞ

� �R
V

l0

4
H 2ð~rÞ þ e0

4
E2ð~rÞ
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which, in microwave engineering, is known as Slater’s for-
mula [9].

3. Ponderomotive effects

Any cavity will have an infinite number of mechanical
eigenmodes of vibration represented by a complete infinite
set of orthonormal displacement functions /lð~rÞ. The
actual displacements of the cavity wall, nð~rÞ and the forces
on the wall, F ð~rÞ can be expanded into the functions /lð~rÞ:

nð~rÞ ¼
X

l

ql/lð~rÞ; ql ¼
Z

S
nð~rÞ/lð~rÞdS

F ð~rÞ ¼
X

l

F l/lð~rÞ; F l ¼
Z

S
F ð~rÞ/lð~rÞdS

ð4Þ

where ql is the amplitude of mechanical mode l whose
equation of motion is

d

dt
oL
o _ql
� oL

oql

þ oU
o _ql
¼ F l ð5Þ

with L = T � U, where U, T, and U are the kinetic energy,
the potential energy, and the power dissipation, respectively.

U ¼ 1

2
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where cl is the elastic constant, Xl is the frequency, and sl

is the decay time of mechanical mode l. Eq. (5) then
becomes

€ql þ
2

sl
_ql þ X2

lql ¼
X2

l

cl
F l ð7Þ

Since the frequency shift Dxl caused by mechanical mode l
is directly proportional to ql, and the force Fl due to the
radiation pressure is proportional to the square of the field
amplitude V, the equation for Dxl is

D€xl þ
2

sl
D _xl þ X2

lxl ¼ �klX
2
lV 2 þ nðtÞ ð8Þ

The constant kl (the Lorentz coefficient for that mode) rep-
resents the coupling between the rf field and mechanical
mode l, and n(t) is an additional driving term representing
external vibrations or microphonics. The total frequency
shift is

DxðtÞ ¼
X

l

DxlðtÞ

and in steady-state

Dx0 ¼
X

l

Dxl0 ¼ �V 2
X

l

kl; and k ¼
X

l

kl

is the static Lorentz coefficient of the cavity.

Fig. 1. Lorentz transfer function of a b = 0.61, 805 MHz 6-cell elliptical
cavity (top) [10], and of a double-spoke 352 MHz, b = 0.4 cavity (bottom)
[11].
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