

PHYSICA ()

Physica C 435 (2006) 66-70

www.elsevier.com/locate/physc

MgB₂ thin films and MgB₂/AlN/MgB₂ SIS junctions

Hisashi Shimakage *, Zhen Wang

KARC National Institute of Information and Communications Technology, 588-2 Iwaoka, Kobe 651-2492, Japan Available online 21 February 2006

Abstract

As-grown MgB₂ thin films were fabricated by a sputtering method and a co-evaporation method. We found that the critical temperatures strongly depended on the deposition rate. The MgB₂ thin films showed critical temperatures of 29 K for the sputtering method and 35 K for the co-evaporation method with relatively low substrate temperatures. For the fabrication of all MgB₂ SIS junctions, we selected AlN as the material for the barrier layer, which has hexagonal crystal structure. In fabricating MgB₂/AlN/NbN junctions, we found that the AlN deposition with a higher substrate temperature formed insulator layers other than AlN. We also prepared MgB₂/AlN/MgB₂ trilayers for SIS junctions using low AlN deposition temperature condition without breaking the vacuum. The MgB₂/AlN/MgB₂ junctions showed a clear Josephson current and gap structures. The critical current density was 120 A/cm² and the ratio of sub-gap resistance and the normal resistance was 3.3 when the AlN insulator thickness was 0.14 nm. We showed current–voltage characteristics of the MgB₂/AlN/MgB₂ junctions with varying AlN layer thicknesses.

© 2006 Published by Elsevier B.V.

PACS: 85.25.Cp

Keywords: MgB2; Co-evaporation; Sputtering; SIS

1. Introduction

Many interesting properties of magnesium diboride (MgB₂) were revealed by different institutes after its discovery in 2001 [1]. For widespread applications of MgB₂, the fabrications of high quality MgB₂ films and Josephson devices are very important key technology. Soon after discovering MgB₂, Kang et al. reported a MgB₂ thin film fabrication process with high temperature annealing, which is called the two-step method [2]. The thin films showed a high critical temperature of 39 K and at 40 K showed a resistivity 2.1 µcm, this indicated that the MgB₂ is a good conductor. However, the surface of the thin film easily deteriorated in the annealing process. As a result, the surface order parameter would also deteriorate. Therefore, a two-step process cannot be used to fabricate superconductor-insulator-superconductor (SIS) junctions. On the other hand, Zheng et al. proposed hybrid physical-chemical

vapor deposition (HPCVD) methods [3] as an as-grown deposition technique, which has a critical temperature greater than 40 K. This method showed the potential of MgB₂ thin films for producing Josephson junctions. However, the substrate temperature in the processing is greater than 700 °C, which would prevent multi-layer thin films from being produced because of chemical reactivity, including solid reactions, diffusion of atoms. Therefore as-grown deposition techniques with relatively low temperature have to be developed. We have already reported the co-evaporation [4] and sputtering methods [5] as asgrown fabrication methods with relatively low substrate temperatures.

As for SIS Josephson junctions using MgB₂ thin films, Carapella, et al. reported Nb/Al₂O₃/Al/MgB₂ SIS junctions [6], that showed a gap structure in its dI/dV-V curves. However, the I-V characteristics showed weak nonlinear properties and no Josephson current. Kim et al. reported MgB₂/Al₂O₃/V junctions [7], that showed very sharp gap properties and low leak current within the gap voltage in its dI/dV-V curves at 1 K. These prop-

^{*} Corresponding author. Tel.: +81 78 969 2194; fax: +81 78 969 2199. E-mail address: simakage@nict.go.jp (H. Shimakage).

erties suggested that MgB₂ SIS junctions were very promising devices for electronics applications. We have also been studying MgB₂/AlN/NbN SIS junctions [8] in an effort to fabricate all MgB2 junctions. The junctions showed a Josephson current, clear gap voltages and low leak current properties. In the experiments, we have shown the potential of the MgB₂ SIS junctions for producing all MgB₂ SIS junctions in near future. Using our successive fabrication processes for MgB₂/AlN/NbN SIS junctions, we have reported the successive fabrication process of MgB₂/AlN/MgB₂ SIS junctions [9]. We showed SIS-like I-V characteristics for the junctions. This suggests the potential use for this fabrication technique in future electronic applications. However, the obtained gap voltages were from the π band gap in the two-gap scenario of MgB₂ materials.

2. Fabrication of as-grown MgB₂ thin films

2.1. Co-evaporation method

We have developed the co-evaporation deposition technique for as-grown MgB₂ thin films [4]. The deposition fabrication process is described in detail elsewhere [10]. The boron (B) was evaporated by electron beam deposition, and the magnesium (Mg) was evaporated by thermal heating. The deposition rate was monitored to stabilize the MgB₂ fabrication rate. The substrate temperature was also constantly regulated by SiC heater. As the Mg is easily oxidized because of its high reactivity, an important role for MgB₂ deposition is to prevent the Mg from being oxidized. One solution is to use a high vacuum chamber before fabricating MgB2. Ueda and Naito [11] used a high vacuum chamber at a pressure of 5×10^{-7} Torr for their molecular beam epitaxy process, and obtained a $T_{\rm C}$ of around 35 K. However, it is difficult to maintain a high vacuum for long period of time. Here, we propose process conditions with high Mg deposition rate that acts to accelerate the MgB₂ deposition rate, which results in helping to prevent the Mg oxidization. We tested the proposed conditions and found that by increasing the Mg deposition temperatures, the substrate temperature can be increased, and it is expected that MgB₂ thin films with better quality could be obtained. Fig. 1 shows the resistivity of MgB₂ thin films produced by using the co-evaporation method dependence on temperature. The Mg deposition rate, B deposition rate, and the substrate temperature were 10 nm/s, 1.5 nm/s, and 363 °C, respectively. The $T_{\text{C,onset}}$ and $T_{\text{C,offset}}$ were 35.9 K and 35.2 K, where, $T_{\text{C,onset}}$ and $T_{\text{C,offset}}$ were defined as the temperatures at which the resistance starts to decrease and becomes zero. Although the vacuum of our deposition chamber was around 2×10^{-6} Torr, the $T_{\rm C}$ was relatively high, which indicated that a high Mg deposition rate had the same effect as a high vacuum background. We are still improving our co-evaporation set-up to increase the Mg deposition rate, which would hopefully produce high quality MgB2 thin films.

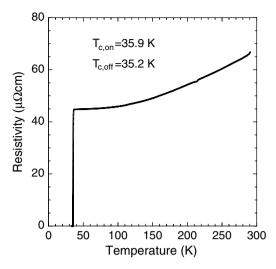


Fig. 1. Resistivity-temperature curve of MgB₂ thin films produced by coevaporation method.

2.2. Sputtering method

We have also developed a sputtering method for asgrown MgB₂ thin films [5]. The sputtering process is described in detail elsewhere [12]. In the process chamber, we have individual Mg and B targets, and the Mg was deposited by using dc magnetron sputtering and B was deposited by ac magnetron sputtering. The targets were located in a circle on a central sample holder, and the sample holder was rotated to sequentially deposit Mg and B. Fig. 2 shows the resistivity of MgB₂ thin films made by sputtering method depending on temperature. The substrate temperature was constant at 290 °C and the Ar pressure was 5 mTorr. The $T_{\rm C,onset}$ and $T_{\rm C,offset}$ were 29.2 K and 29.1 K, which showed a very small transition temperature, although the T_C was lower than that of MgB₂ made by co-evaporation. As our target sizes were 6 inches in diameter, we achieved a good surface uniformity, which

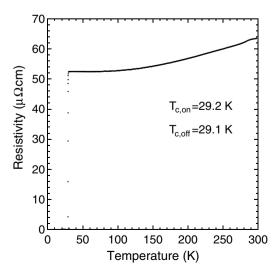


Fig. 2. Resistivity-temperature curve of MgB₂ thin films produced by sputtering method.

Download English Version:

https://daneshyari.com/en/article/1820829

Download Persian Version:

https://daneshyari.com/article/1820829

<u>Daneshyari.com</u>