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Abstract

It is shown how to compute from Maxwell–London theory the static and dynamic electromagnetic properties of thin flat supercon-
ducting films of any shape, also for SQUID washers, containing vortices or no vortices.
� 2005 Elsevier B.V. All rights reserved.
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Superconducting quantum interference devices
(SQUIDs) typically have the shape of a thin-film disk or
a rectangular film, with a radial slit leading to a central
hole. This slit is bridged at some point by one or two ‘‘weak
links’’ acting as Josephson junctions that can carry a lim-
ited supercurrent. A perpendicular applied magnetic field
Ha(r) generates complicated screening currents that will
pass or not pass the weak link and thereby modify the volt-
age response to a small test current [1]. The penetration and
motion of two dimensional (2D) Pearl vortices [2] cause
noise in the SQUID. For SQUIDs without and with vorti-
ces, the 2D sheet current J(x,y) = (Jx, Jy) and the related
complicated magnetic field Hz(x,y) in the film plane can
be calculated for any value of the 2D magnetic penetration
depth K = k2/d (k = London depth, d = film thickness,
d < k) as follows [3]. See also the different methods [4,5]
and similar work on slitted rings [6] and double-strip
SQUIDs [7].

Since $ Æ J = 0 in the film except at small contacts, one
can express J in terms of a scalar potential or stream func-
tion g(x,y) as J¼�ẑ�rg ¼r� ðẑgÞ ¼ ðog=oy;�og=oxÞ.
This function g(x,y) has interesting properties:

(a) g(x,y) is the local magnetization or density of tiny
current loops;

(b) the contour lines of g(x,y) are the current stream
lines;

(c) on the boundary of the film, one may put g(x,y) = 0
since the boundary coincides with a stream line;

(d) the integral of g(x,y) over the film area is the
magnetic moment of the film if g = 0 on its edge;

(e) the difference g(r1) � g(r2) is the current that crosses
any line connecting points r1 and r2;

(f) if the film contains an isolated hole or slot such that
magnetic flux can be trapped in it or a current I can
circulate around it, then in this hole one has g(x,y) =
const = I if g(x,y) = 0 is chosen outside the film;

(g) in a multiply connected film with n holes, n indepen-
dent constants g1. . .gn can be chosen for the values of
g(x,y) in each of these holes. The current flowing
between hole 1 and hole 2 is then g1 � g2;

(h) a vortex with flux U0 in the film moves in the poten-
tial V = �U0g(x,y), since the Lorentz force on a
vortex is �J� ẑU0¼�U0ẑ�ðẑ�rgÞ¼U0rgðx;yÞ¼
�rV ;

(i) a vortex moving from the edge of the film into a hole
connected to the outside by a slit, at each position
(x,y) couples a fluxoid U0g(x,y)/I into this hole,
where g(x,y) is the solution that has g(x,y) = I in this
hole (with closed slit) and g = 0 outside the film.

To compute g(x,y) I introduce a 2D grid that spans the
film area with (preferably non-equidistant) points ri =
(xi,yi) and weights wi such that any integral is approxi-
mated by a sum:

R
d2rf ðrÞ �

PN
i¼1wif ðriÞ. From Ampère’s

law for the current density j = J/d = $ · H and the
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London equation k2$ · j + H = 0 one obtains by integrat-
ing over the film thickness

H zðx; yÞ ¼ �K½r � Jðx; yÞ�ẑ ¼ Kr2gðx; yÞ; ð1Þ
H zðriÞ ¼ H aðriÞ þ

X
j

QijwjgðrjÞ; ð2Þ

H aðriÞ ¼ �
X

j

Qijwj � Kr2
ij

� �
gðrjÞ; ð3Þ

gðriÞ ¼ �
X

j

KK
ijH aðrjÞ ð4Þ

with the inverse matrix KK
ij ¼ ðQijwj � Kr2

ijÞ
�1 and the

Ampère’s law kernel

Qij ¼ ðdij � 1Þqij þ dij

X
l 6¼i

qilwl þ Ci

 !,
wj; ð5Þ

where qij = 1/(4pjri � rjj3), r2
ij is the Laplacian such thatP

jr2
ijf ðrjÞ � r2f ðrÞ at r = ri, and

Ci ¼
1

4p

X
p;q

ða� pxiÞ
�2 þ ðb� qyiÞ

�2
h i1=2

. ð6Þ

Here p,q = ±1 (yielding four terms), and the grid fills the
rectangle jxj 6 a, jyj 6 b that should contain the film, i.e.,
the film may be this rectangle or smaller, containing holes,
slits, or rounded corners.

Computation of the dynamics J(x,y, t), Hz(x,y, t)
(t = time) for any history Ha(t) and given flux-motion resis-
tivity q(J) is described in [3,8].

The current stream lines and the stream function g(x,y)
in the Meissner state for various SQUID geometries are
shown in Figs. 1, 2 and 4, while Figs. 3 and 5 show mag-
netic field profiles along the x-axis, the symmetry axis of slit
and hole. Figs. 1–3 apply to a thin-film rectangle 2a · 2b,
b/a = 0.6, and Figs. 4 and 5 to a square film a = b, slit
width D � 0.02a. The stream lines of the sheet current are
depicted for K = 0 and three cases: flux focussing
(Ha = 1, I = 0), flux trapping (Ha = 0, I = 1), and zero flux
in hole and slit (Ha = 1, I > 0). The magnetic field profiles
are shown for various K. For K = 0 (ideal screening), the
enhancement of the magnetic field Hz(x, 0) in the slit may
be understood from the estimate [9] for a long strip of
width 2b with central slit of width D� b� a: Hz(x, 0)/
Ha � (2b/D)/ln(8b/D)� 1. For a detailed theory of two
long in-plane parallel strips with arbitrary K in perpendic-
ular field Ha and with applied current (‘‘linear SQUID’’)
see Ref. [7]. The field lines of the rectangle with slit in
Fig. 1 (middle) agree with the field lines computed in
Ref. [10] using the method of Ref. [5].

The above cases with closed slit consider multiply
connected films. These in general have one or more holes

slit open,  Ha> 0,  I = 0,  flux focussing

slit closed,  Ha= 0, I > 0,  trapped flux

slit closed,  Ha> 0,  I > 0,  flux = 0 in hole

Fig. 1. Current stream lines in the ideal Meissner state K = 0 for a
rectangular thin film (b/a = 0.6) with a slit. Top: Slit open, applied field
Ha > 0, magnetic flux enters the slit and is focussed into it such that
Hz(x,y)� Ha. Middle: Slit bridged at the edge, Ha = 0, circulating current
I > 0 flows due to flux trapped in the slit. Bottom: Closed slit, applied field
Ha > 0, a current I = 0.82aHa flows such that the flux in the slit is exactly
zero (superposition of the two upper states).
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Fig. 2. The stream function g(x,y) for the trapped-flux case of Fig. 1,
middle, as 3D plot.
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