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Abstract

We numerically study the vortex core structure in a noncentrosymmetric superconductor such as CePt3Si without mirror symmetry
about the xy plane. A single vortex along the z axis and a mixed singlet–triplet Cooper pairing model are considered. The spatial profiles
of the pair potential, local density of states, supercurrent density, and radially-textured magnetic moment density around the vortex are
obtained in the clean limit on the basis of the quasiclassical theory of superconductivity.
� 2005 Elsevier B.V. All rights reserved.
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Much attention has been focused on the heavy fermion
superconductor CePt3Si, which has a noncentrosymmetric
crystal structure without mirror symmetry about the xy

plane [1]. CePt3Si is an extreme type-II superconductor
and the vortex structure of the mixed state in this system
was recently studied by Kaur et al. [2] and Yip [3] on the
basis of the Ginzburg–Landau theory and the London the-
ory. In this paper, we investigate the vortex core structure
on the basis of the quasiclassical theory of superconductiv-
ity [4], which enables us to calculate more microscopically
the physical quantities such as the pair potential, local den-
sity of states, supercurrent density, and magnetic moment
density. We consider a single vortex along the z axis in
the clean limit.

The noncentrosymmetricity (or the lack of inversion
symmetry) leads to the mixture of Cooper pairing channels
of different parity [5]. We consider the following supercon-
ducting order parameter in a singlet–triplet mixing form:
D̂k ¼ ðWr̂0 þ dk � r̂Þir̂y ¼ ½Wr̂0 þ Dð�~ky r̂x þ ~kxr̂yÞ�ir̂y , with
the s-wave pairing component W and the d vector
dk ¼ Dð�~ky ; ~kx; 0Þ. This s + p-wave pairing state is pro-

posed for CePt3Si in Ref. [6]. Here, ðr̂x; r̂y ; r̂zÞ are the Pauli
matrices in the spin space, r̂0 is the unit matrix, and
~k ¼ ð~kx; ~ky ; ~kzÞ ¼ ðcos / sin h; sin / sin h; cos hÞ.

The lack of inversion symmetry here is incorporated
through a Rashba-type spin–orbit coupling with a form
proposed in Ref. [7]. It splits the Fermi surface into two
ones (I and II) by lifting the spin degeneracy [6]. From
the original Eilenberger equation for noncentrosymmetric
superconductivity [8], we obtain two equations correspond-
ing to these split Fermi surfaces I and II in the case of the
above s + p-wave pairing state [9],

ivI;II � $�gI;II þ ½ixn�s3 � �DI;II; �gI;II� ¼ 0; ð1Þ

where �DI;II ¼ ½ð�s1 þ i�s2ÞDI;II � ð�s1 � i�s2ÞD�I;II�=2, DI,II = W ±
Dsinh are the order parameters on the Fermi surfaces I
and II, ð�s1;�s2;�s3Þ are the Pauli matrices in the particle-hole
space, and the commutator ½�a; �b� ¼ �a�b� �b�a. We neglect the
vector potential in Eq. (1) assuming the extreme type-II
superconductivity. We use units in which �h = kB = 1.

The Green functions �gI;II on the Fermi surfaces I and II
are written as a matrix in the particle-hole space

�gI;IIðr; ~k; ixnÞ ¼ �ip
gI;II if I;II

�i�f I;II �gI;II

 !
. ð2Þ
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The regular Green function ĝ as a matrix in the spin space
is given by [6,8,9]

ĝ ¼ gIr̂I þ gIIr̂II ¼
1

2

gI þ gII ��k0þðgI � gIIÞ
��k0�ðgI � gIIÞ gI þ gII

 !
;

ð3Þ
with r̂I;II ¼ ðr̂0 � �gk � r̂Þ=2 and �gk ¼ ð��ky ; �kx; 0Þ. Here,
�k0� ¼ �ky � i�kx and �k ¼ ð�kx; �ky ; 0Þ ¼ ðcos /; sin /; 0Þ.

We consider a single vortex which has a form, DI,II

(r,/r;h) = [W(r) ± D(r) sinh]exp(i/r). Here, the real-space
coordinates r = (rcos/r, rsin/r, 0), and the vortex center is
situated at r = 0. The Fermi surface is assumed to be spher-
ical, and the differences of the density of states and the
Fermi velocity vI,II between the two Fermi surfaces I and
II are assumed to be small and are ignored. The results
in this paper depend predominantly on the spin structure
[Eq. (3)] and the gap structure on the 3D Fermi surfaces,
and the Fermi surface anisotropy would not lead to quali-
tatively different results as long as the spin and gap topol-
ogies are not altered. We numerically solve the gap
equations given in Ref. [6,8,9] and the Eilenberger equa-
tions in Eq. (1) self-consistently as in Ref. [10]. When solv-
ing the gap equations, we adopt the same values of
parameters as used in Ref. [8]. Thus, both the pair poten-
tials D and W are real and positive, and jDj > jWj [8]. From
now on, Tc is the superconducting critical temperature and
n0 = vF/Tc is the coherence length at zero temperature
(vF = jvFj is the Fermi velocity).

In Fig. 1, we show the spatial profiles of the pair poten-
tials D (p-wave component) and W (s-wave one) around the
vortex for several temperatures T. It is noticed that while
the amplitude is different between D and W, the character-
istic recovery length (namely, the core radius) is the same
for both.

The local density of states (per spin) is calculated by

NðE; rÞ ¼ N 0

2
RehTr½ĝðixn ! E þ igÞ�i

¼ N 0

2
RehgI þ gIIi; ð4Þ

where h � � � i denotes the average over the Fermi surface, N0

is the density of states per spin at the Fermi level, and g

(>0) is the energy smearing factor. Before going into the
vortex bound states, let us see in Fig. 2 the density of states
in the bulk without vortices. There are four gap edges (solid
line). The system has two split Fermi surfaces I and II [8,9].
The two of the gap edges originate from the fully-gapped
Fermi surface I (dashed line), and the other two originate
from the line-node-gap Fermi surface II (dash–dotted line).

In Fig. 3, we show the local density of states inside the
vortex core. There are four branches of peaks, which are
related to the vortex bound states. The outer (inner) two
branches originate from the vortex bound states of the
quasiparticles on the Fermi surface I (II). Thus, the present
spectra inside the vortex core in the clean limit possess the
same structure as those in a two-gap superconductor.

In Fig. 4, we plot the supercurrent density jjj, which is
calculated by

j ¼ eT
X
xn

N 0hvFTr½r̂0ð�ipĝÞ�i

¼ �ipeT
X
xn

N 0hvFðgI þ gIIÞi; ð5Þ

where e is the electric charge of the quasiparticle. We have
confirmed numerically that jjj decays as �1/r far away
from the core. jjj exhibits essentially the same structure as
that in usual s-wave superconductors.

Finally, we investigate the magnetic moment density M.
The vortex-core magnetization in the present noncentro-
symmetric system has been reported by Kaur et al. [2]
and Yip [3]. Here, we calculate it to obtain numeric results
at various temperatures by means of a more microscopic
derivation. M is calculated by

M ¼ lBT
X
xn

N 0hTr½r̂ð�ipĝÞ�i; ð6Þ

where lB is the magnetic moment of the quasiparticle.
Substituting Eq. (3) into this, we obtain

Mx ¼ �iplBT
X
xn

N 0hð��kyÞðgI � gIIÞi; ð7Þ

My ¼ �iplBT
X
xn

N 0h�kxðgI � gIIÞi; ð8Þ

Mz ¼ 0. ð9Þ
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Fig. 1. Spatial profiles of the pair potentials. T/Tc = 0.1–0.9 from top to bottom by 0.1 step. (a) the p-wave component D, and (b) the s-wave one W.
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