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a b s t r a c t

We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings
using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA)
method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron
amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical
planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice
model. The fitting results are used for lattice correction. The method has been successfully demonstrated
on the NSLS-II storage ring.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Linear optics correction has crucial importance in the operation
of a storage ring accelerator. There are many error sources that
contribute to deviations of the storage ring optics from the ideal
model. These include systematic and random errors of quadrupole
components of all magnets, feeddown from horizontal orbit offsets
in sextupole magnets, and perturbations due to insertion devices.
Linear optics errors usually degrade the nonlinear dynamics per-
formance of the storage ring, causing a reduction of dynamic
aperture and momentum aperture. Linear optics errors can be
corrected with adjustments to the strengths of quadrupole mag-
nets. Correction of linear optics often lead to improvements of
injection efficiency and/or Touschek lifetime [1]. It may also be
necessary to correct the linear optics in order to deliver certain
beam parameters to facilitate user experiments, beam diagnostics,
or machine protection. For example, accurate beta functions may
be required at certain locations of the ring, or an accurate phase
advance may be required between two storage ring components.

Linear coupling between the horizontal and vertical planes and
spurious vertical dispersion are other types of common errors in a
storage ring that need to be controlled. Linear coupling can be
caused by skew quadrupole components of magnets through
magnet errors, rolls of quadrupoles, and vertical orbit offset in
sextupole magnets. Spurious vertical dispersion can be caused by
vertical steering magnets and coupling of the horizontal

dispersion through skew quadrupole components in dispersive
regions. Both linear coupling and spurious vertical dispersion
contribute to the vertical emittance and both can be corrected
with skew quadrupoles. The reduction of vertical emittance
through linear coupling and spurious vertical dispersion correc-
tion is often referred to as “coupling correction”.

Linear optics and coupling correction for storage rings is typi-
cally done with orbit response matrix based methods (e.g., LOCO
(linear optics from closed orbit) [1], used in this paper). By fitting
quadrupole and skew quadrupole variables in the lattice model to
the measured orbit response matrix and dispersion data, LOCO
finds a set of magnet errors that can give rise to the observed
lattice errors. Correcting the magnet errors in the machine then
leads to improved linear optics and reduced coupling error.

In recent years turn-by-turn (TbT) BPMs have become widely
used in storage rings. TbT BPMs not only detect the closed orbit,
but also the orbit of a beam in coherent oscillation. From the latter
betatron amplitudes and phase advances can be derived [2–4],
which in turn can be used for optics correction [4–8]. TbT BPM
data also contain linear coupling information and can be used for
coupling correction. Methods based on the correction of global
and/or local linear coupling resonance driving term were pre-
viously proposed or carried out by several authors [9–13]. Typi-
cally these methods require linear optics correction beforehand in
order to obtain an accurate optics model as needed for coupling
correction. Ref. [14] proposed a method that could be used to si-
multaneously correct linear optics and coupling. One disadvantage
of this method is that the BPM errors of the first two BPMs pro-
pagate downstream and may affect the fitting results. The ex-
tended section by section technique (SBST) developed at LHC can
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be used for optics and coupling correction [15]. The extended SBST
method has not been used on storage ring light sources, probably
because of its relative complexity as compared to the LOCO
method.

In this paper we propose and experimentally demonstrate a
new method to simultaneously correct linear optics and coupling.
The independent component analysis (ICA) method is first applied
to extract the amplitudes and phases of the projection of the
normal modes on the horizontal and vertical BPMs [4], which are
then compared to their model generated counterparts in fitting.
The fitting scheme is similar to LOCO. Since closed orbit response
and coherent orbit oscillation sample the optics and coupling er-
rors of the machine in a similar fashion, it is expected the per-
formance of this method would be similar to that of LOCO. How-
ever, the TbT BPM data based method has a great advantage in that
data taking is significantly faster than LOCO. The time for taking
orbit response matrix data may vary from 10–100 min for different
machines, while TbT BPM data taking takes only a few seconds.
Simulation results for our new method were previously reported
in Ref. [16].

In the following we first describe the method in Section 2. A
discussion of simulation results is in Section 3. Experimental re-
sults on the National Synchrotron Light Source-II (NSLS-II) storage
ring are presented in Section 4. Conclusion is given in Section 5.

2. Optics and coupling correction with ICA

Betatron motion with linear coupling can be decoupled into
two normal modes [17,18]. In general, the beam motion observed
by a BPM on any of the two transverse planes has components of
both normal modes. Normally the two modes have different be-
tatron tunes and hence can be separated with the ICA method
when TbT BPM data from BPMs around the ring are analyzed to-
gether [4]. In the ICA process, BPM noise is reduced and other
components of beam motion, such as synchrotron motion and
nonlinear resonance terms, are isolated from the betatron motion.
Therefore, the resulting betatron components have high accuracy.

Each betatron normal mode corresponds to two orthogonal ICA
modes. The betatron components on each BPM consist of four ICA
modes, which can be expressed as
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where xn and yn are observed beam positions on the horizontal
and vertical planes at the nth turn, respectively,
Ψ πν ψ= +n2n n1 ,2 1,2 1,2, and ν1,2 and ψ1,2 are the tunes and initial
phases of the normal modes. The initial phases ψ1,2 are equal for all
BPMs. Typically in a storage ring the linear coupling is weak, in
which case the observed x-motion is dominated by one normal
mode and the y-motion by the other. For each transverse plane we
call the dominant mode the primary mode and the other mode the
secondary mode. The tunes of the primary modes are close to the
uncoupled tunes for the corresponding planes. For the con-
venience of discussion, we refer the horizontal primary mode as
normal mode 1 and the vertical primary mode as normal mode 2.

The linear coupled motion of betatron coordinates
= ( ′ ′)X x x y y, , , T at any location of the ring can be predicted with

the one-turn transfer matrix T . Diagonalizing the transfer matrix,
one can relate betatron coordinates to normal mode coordinates
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via a transformation Θ=X P , where J1,2 and Φ1,2 are the action and
phase variables for the two normal modes, respectively [19]. In
particular, the position coordinates x and y are given by
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where the pij coefficients are elements of matrix P and by choice of
the initial values of phase variables Φ1,2, we have = =p p 012 34
[19]. Not considering damping of the coherent motion (e.g., due to
decoherence), the action variables are constants of motion. The
phase variables Φ1,2 advances from one location to another and the
phase advances for a full turn are πν2 1,2.

Clearly the measured beam motion in Eq. (1) and the model
predicted motion in Eq. (3) represent the same physical process
and are separated in the same form. The amplitudes and phase
advances of the two normal modes on the two transverse planes
in the two equations should be equal. Equating the amplitudes, we
obtain
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The J1,2 constants can be calculated by averaging the values de-
rived from the amplitudes of the primary modes, i.e., using Eqs.
(4) and (6). Aside from constant initial phase, the phase advances
can also be equated, leading to
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where πMod2 indicates taking modulus of π2 and we have made
use of the fact that the value of arctangent can be uniquely de-
termined within [0, π2 ) when both sine and cosine of an angle is
known.

The phase advances of the normal modes Φ1,2 at the BPMs can
be calculated with the lattice model. The P matrix can be com-
puted from the one-turn transfer matrix at the BPM with the
numeric procedure given in Ref. [19] or alternatively with equation
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