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a b s t r a c t

In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random
sampling, likelihood weights can be used to infer experimental information into the distributions for the
ND. As the included number of correlated experimental points grows large, the computational time for
the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also
other problems related to the conventional computation of the likelihood, e.g., the assumption that all
experimental uncertainties are Gaussian.

In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead,
the experimental correlations are included by sampling of systematic errors. It is shown that the model
underlying the sampling methodology (using univariate normal distributions for random and systematic
errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is
also shown that the likelihood estimates obtained through sampling of systematic errors approach the
likelihood obtained with matrix inversion as the sample size for the systematic errors grows large.

In studied practical cases, it is seen that the estimates for the likelihood weights converge imprac-
tically slowly with the sample size, compared to matrix inversion. The computational time is estimated
to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling
of systematic errors has little potential to compete with matrix inversion in cases where the latter is
applicable.

Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret
than the conventional model and the likelihood function involving the inverted covariance matrix.
Therefore, this work can both have pedagogical value and be used to help motivating the conventional
assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could
also be used in cases where the experimental uncertainties are not Gaussian, and for other purposes than
to compute the likelihood, e.g., to produce random experimental data sets for a more direct use in ND
evaluation.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In nuclear data (ND) uncertainty assessment and propagation,
it is common to use Bayes' theorem to update the distributions for
the ND with experimental information, see e.g. Refs. [1–8]. In
methodologies based on random sampling of the nuclear data,
such as Total Monte Carlo (TMC) [9,10], such an updating

procedure involves computing the likelihood function for any
sampled set of ND.

The errors in the experimental points are correlated due to
systematic uncertainties that different experimental points have in
common, such as uncertainties of the thickness or nuclide density
of a particular target, detector efficiencies or (not the least) nor-
malizing cross-sections. Because of this correlation, the computa-
tion of the likelihood function typically involves the computation
of the generalized χ2. This, in turn, involves the inversion of the
experimental covariance matrix CE, with non-zero off-diagonal
elements.
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To enable the inclusion of cross-nuclide experimental correla-
tions in such a methodology, it is necessary to construct an
experimental covariance matrix that spans over experiments for
several nuclides. As more nuclides get included in the same
matrix, the size of CE increases, and since the computational
complexity of the inversion of a general m�m matrix is propor-
tional to approximately m2:8 (using Strassen's algorithm [11,12])
the computational time needed for matrix inversion can become a
practical problem. As an example of this, the deterministic eva-
luation code of the GANDR project [13], which has the capability of

a simultaneous evaluation of 130 important materials, is currently
limited to 3600 correlated experimental points [13]. Further, the
computation of the generalized χ2 can be hard to intuitively
interpret due to the matrix inversion. The use of the generalized χ2

also relies on the assumption that all experimental uncertainties
are normally distributed.

For these reasons, this work presents and investigates an
alternative approach to compute the likelihood weights, based on
simulating the correlated experimental errors instead of con-
structing an experimental covariance matrix. This novel way of
computing the likelihood is compared to the conventional way, i.e.,
making use of matrix inversion.

In Section 2, the reader is introduced to TMC, the ND
uncertainty propagation methodology which is used as a prac-
tical starting point in this paper. Then, a brief description of the
file weighting is given, followed by a description of the two
discussed methods to compute the likelihood: matrix inversion
and sampling of systematic errors. Section 2 is closed by some
details on how the two methods are compared numerically. In
Section 3, the results from applying the methodology to a set of
test cases are found, with focus on the rate of convergence. The
paper ends with discussion and conclusions in Sections 4 and 5,
respectively.

2. Methodology

2.1. Total Monte Carlo (TMC)

The idea of the Total Monte Carlo methodology (TMC) [9,10] is
to

Nomenclature

β power in expression for computational complexity
Tneededpmβ

CE experimental covariance matrix
χ2k generalized χ2 for k'th random file
χ2
k;no corr: χ

2
k assuming no experimental correlations

δij Kronecker delta
Eℓ random variable describing ℓ'th systematic

contribution
ε the random vector ðE1; E2;…; EνÞT
ε possible observation of ε
εðsÞ s'th sample from ε
〈 � 〉 expected value
fW probability density function for random variable/vec-

tor W
G matrix used for numerical evaluation of

determinant ratio
I identity matrix
k random file number
LðpðkÞ; xÞ likelihood function for pðkÞ under x
LðpðkÞ; xjε¼ εÞ likelihood for pðkÞ and x given ε¼ ε
m # of experimental points
m max greatest m for which reasonable convergence is

observed
μ true values corresponding to x
μi true value corresponding to xi (element of μ)
N length of p
n # of random files in TMC

ν # of systematic contributions
p vector with nuclear model parameters
pj j'th element of p
pðkÞ nuclear model parameters used for k'th random file
QkðSÞ ratio of likelihood estimate with sample size S and

likelihood from matrix inversion
S sample size for sampling systematic errors
σi random uncertainty in i'th experimental point
σiℓ uncertainty in the i'th experimental point due to the

ℓ'th systematic contribution
Sneeded S needed to obtain Vgoal

·T transpose of matrix or vector
τðkÞ vector with model values corresponding to x in k'th

random file
Tneeded computational complexity to obtain Vgoal

Vð�Þ variance
Vgoal desired V̂ ðQkðSÞÞ
V̂ ðQkðSÞÞ estimated variance of QkðSÞ
wk weight for k'th random file
X random vector describing the experimental points
x vector with experimental results
Xi random variable describing i'th experimental point

(i'th element of X)
xi i'th element of x (i'th experimental point)
ξk2 “conditioned χ2” for k'th random file
Xi j ðε¼ εÞ Xi given ε¼ ε
Yi random variable for i'th experimental point without

systematic uncertainty
0 zero vector

Fig. 1. The unweighted and weighted distributions for the dose rate from a neutron
source shielded by iron-rich concrete, varying 56Fe data (from Ref. [2]).
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