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a b s t r a c t

A novel approach to positron emission particle tracking is presented based on determining regions of
space with high density of line of response crossing via clustering. The method is shown to be able to
accurately track multiple particles in systems where the number of particles is unknown and in which
particles can enter and leave the field of view of the scanning system. This method is explored in various
environments and its parametric dependence is studied.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Positron emission particle tracking (PEPT) is a measurement tech-
nique in which positron emission tomography (PET) technology is
used to locate the position of a moving tracer [17]. The tracer is labeled
using a positron-emitting isotope such as F-18, Ga-68, or Na-22. This
positron will annihilate in the near vicinity of the tracer particle,
emitting back-to-back, coincident gamma rays. By detecting these
coincident gamma rays, one can draw a “line of response” (LOR)
between the two detection sights. In theory, each of these LORs will
pass near the location of the tracer. Thus, by examining the positions
of thousands of these LORs, one can calculate the position of the tracer
as it moves throughout the bore of the PET scanner.

The original and most prominent PEPT algorithm is that developed
by Parker et al at the University of Birmingham (1993). In this method,
a chronologically collected sequence of LORs is arranged into groups of
N LORs, each group collected within a specific time interval. Using
these N events, one can calculate the position of the tracer as the point
in space that minimizes the sum of the distances from the tracer to
each of the LORs. In this method, an iterative approach is used to
remove LORs that are deemed corrupt (either from Compton scatter-
ing or random coincidence). Lines further than a preset distance from
the calculated tracer position are rejected iteratively until only a
fraction f of the initial N LORs remains.

This method has been shown to successfully track a single
positron-emitting particle in a number of experiments for various
applications [5,7,8,18,23] . This method has also been expanded to use

in tracking multiple particles in the case that the tracers are labeled
with different, predetermined activities [24]. In this implementation,
the Birmingham algorithm is set up to first find the particle with the
highest activity. All LORs which are used to triangulate this position
are then removed from the field of view and the process is repeated to
find the particle with the second highest activity. This process is
continued until all particles in the field of view have been located. This
approach has been used to track up to three particles at once, but it is
limited by the necessity to have sufficiently different activities on the
tracers while not saturating the detector’s data acquisition system.

2. Line density algorithm

Another approach to both single and multiple PEPT has been
developed by Bickell et al [6]. In this method, called the “line density
algorithm”, a Cartesian, 3-dimensional grid is laid over the field of
view (FOV) of the scanner. LORs are then collected over a preset time
slice (usually a few milliseconds) of the total data set. The algorithm
counts the number of LOR crossings at each point in the Cartesian grid.
The voxel with the highest number of line crossings in this count
matrix is then considered as the source of the gamma rays, and one-
voxel-wide slices are taken in the x, y, and z-directions. Gaussian fits
are applied to the count data for each of these slices with the centroid
taken to be the position of the tracer and the uncertainty in each
direction to be the full width at half maximum (FWHM) of each of
these fits divided by the square root of the number of contributing
LORs. Tests with this algorithm have shown to be comparable in
accuracy to the Birmingham method previously described.

This algorithm can also be used to track multiple tracers when
the initial positions of the tracers are known. By specifying the
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regions of the FOV in which each particle is known to begin, the
line density algorithm can identify local peaks in the count matrix
and determine the location of each particle accordingly. Sub-
sequent particle locations can be found by searching for particles
in regions near each particle location from the previous time step.
By examining the particle locations from multiple previous time
steps, one can use each tracer’s velocity and acceleration data to
further refine each search region in the FOV.

3. A new algorithm

The previously describedmethods are limited in that they require a
priori information of the number of tracers and their locations (in the
case of the line density method). It is desired to have a measurement
technique in which this information is not needed and in which par-
ticles are allowed to enter and leave the field of view of the scanner.
Such a method is desirable for the case of fluid flow measurements in
which a single test section can be studied as part of a recirculating
flow loop. This paper explores a new adaptation of the line density
algorithm in which no a priori information is required of the system,
allowing for a variable number of tracers within the FOV.

3.1. Line density with G-means clustering

A new algorithm is proposed for both single andmultiple PEPT that
is based on finding clusters within the count matrix obtained within
the line density method. The method begins in the same way as the
traditional line density algorithm, dividing the data into time slices
and counting the number of LOR crossings at each point in a Cartesian
grid for each of these time slices. The next step is to filter the data
before beginning the clustering process. First, a check is made to
determine whether there is any particle(s) in the scanner’s field of
view or not. A user-input threshold is set such that if there is no grid
element with a number of LOR crossings greater than or equal to this
number, the time step is skipped. If this thresholding condition is met,
the maximum number of LOR crossings at a given grid point is found.
Then a preset fraction of this maximum value is subtracted from each
point in the count grid, with any point having fewer counts than this
fraction being set to zero. This fraction is determined by the user based
on knowledge of each particle’s activity relative to the background,
and is usually set somewhere in the range of 0.25-0.5. The remaining
data can thus be viewed as points in R3 with a multiplicity corre-
sponding to the number of line crossings at each point. This data can
be grouped into k clusters with the centroid of each cluster being
taken to be the location of a tracer particle. However, such clustering
can be quite difficult if the number of clusters (and thus particles) k is
not known prior to calculation. Due to the isotropic distribution of
positron emission about each tracer, it is expected that each cluster of
LOR crossings should be normally distributed about the true particle
position, and this feature can be used to discriminate between true
and false clusters. For this reason, the method of G-means clustering
is used.

3.2. G-means clustering

Gaussian-means (G-means) clustering is an adaptation of the well-
established k-means algorithm [14] that allows clustering when the
number of natural clusters in a dataset is unknown. In this method,
developed by Hamerly and Elkan [9], principal component analysis
and goodness-of-fit testing are used to determine the number of
clusters k in a data set as well as their locations. The method begins by
performing a k-means clustering of the dataset with k¼1 (or a higher
number if any a priori information is known) and subsequently split-
ting or accepting each cluster based on its adherence to a Gaussian fit.
In this way, it grows the number of clusters in the dataset until it

reaches the number of natural clusters. In the case of our PEPT study,
calculations are always started with a k¼1 clustering (i.e. a universal
centroid calculation). As such, this method is deterministic and does
not risk the potential false convergence error of k-means caused by
poor initialization.

The splitting process is performed based on a statistical testing of
each cluster for normality. If the data appears to be normally dis-
tributed, the cluster is accepted. If it does not, the cluster is split into
two. The statistical test is performed based on the adherence of the
cluster to a one-dimensional Gaussian fit. This process is described as
follows.

Consider a data set S of points in d-dimensional space (in the case
of this method, d¼3) with the data already divided into k clusters, Xj
C S,where j AJ¼{1,2,… k}. Now consider a specific cluster, Xm, where
mAJ, containing n points. Power iteration [2] is performed on the
covariance matrix for Xm and used to identify its main principal
component and the corresponding eigenvalue λ. One then initializes
two daughter centroids, c1 and c2, along the main principal compo-
nent, a distance 7√(2λ/π) from the centroid of Xm, and runs k-means
on the cluster with k¼2 and c1 and c2 as the initial cluster centers.
After c1 and c2 converge on new values, c1’ and c2’, one defines the line
v¼c1'�c2’. A one-dimensional projection of each data in Xm is taken
along v such that x’i¼oxi,v4/||v||2. This new data set Xm’ is a one
dimensional representation of the data in Xm, and is then transformed
so that it has mean 0 and variance 1.

A one-dimensional Anderson–Darling (A–D) test [1] is then per-
formed on the data in Xm’ to test if it is normally distributed. For each
of the n values x’i A Xm’, let zi ¼ F(x’i), where F is the N(0,1) cumulative
distribution function. Then the A–D statistic, A2, is defined as

A2 Zð Þ ¼ �1
n

Xn
i ¼ 1

2i�1ð Þ ln zið Þþ ln 1�znþ1� i
� �� ��n

It has also been shown [21] that for data sets were the mean
and variance are estimated from the data itself, a correction must
be applied to the A–D statistic as follows:

A2
� Zð Þ ¼ A2 Zð Þ 1þ4

n
�25
n2

� �

In the case of this method, if the A–D statistic is below a given
critical value the original cluster Xm is accepted. If it is not, the cluster is
split, and a k-means clustering of the entire data set S is performed
with k’¼kþ1, and centroids initialized at the daughter centers, c1’ and
c2’, and the centroids of the remaining centroids Xn, (nam). This
process is continued until all clusters pass the A–D test.

3.3. G-means example

Fig. 1 shows an example of the splitting of clusters achieved by
the G-means algorithm. The example uses actual 3-dimensional
data acquired from a MicroPET P4 preclinical PET scanner [22]
with three activated particles placed near the scanner's center of
FOV. With three particles, it can be seen that the filtered, line
density dataset has three natural clusters. In this case, the critical
value for the A–D test is arbitrarily taken to be 20, based on the
experience1.

First, the universal centroid is acquired. In the first run
G-means, the daughter centers are found, and the A–D statistic for
the cluster is calculated as 143.2, thus the split is accepted. The
daughter centers and A–D statistic are then found for the lower
cluster, and it is found that A2

� ¼84.25, meaning that this cluster is

1 More precise critical values for the A–D test exist [21] but were derived under
the assumption that the data set being tested is continuous. In the case of our
discrete data, they were found to be too restrictive. It has been determined through
experience that the optimal A–D critical values for our PEPT studies are between 10
and 25.
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