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a b s t r a c t

Various security, regulatory, and consequence management agencies are interested in continuously
monitoring wide areas for unexpected changes in radioactivity. Existing detection systems are designed
to search for radioactive sources but are not suited to repeat mapping and change detection. Using a set
of daily spectral observations collected at the Pickle Research Campus, we improved on the prior Spectral
Comparison Ratio Anomaly Mapping (SCRAM) algorithm and developed a new method based on two-
sample Kolmogorov–Smirnov tests to detect sudden spectral changes. We also designed simulations and
visualizations of statistical power to compare methods and guide deployment scenarios.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The threat of dirty bombs and lost or stolen radioactive sources
has prompted the development of a variety of systems to detect
and identify radioactive materials, ranging from van-mounted
gamma imaging systems to backpack-based search systems.
These systems are typically designed for border checkpoints,
source search, or source identification, but not for the continuous
monitoring of a wide area. Here we investigate detecting changes
in radiation spectra over a wide area, such as a city, stadium,
campus, or large public event. Our goal is to develop an automated
mobile sensor system which could monitor radiation spectra over
time and detect sudden changes that might indicate the intro-
duction of a radioactive source.

The fastest and most sensitive existing method for mapping
radiation over a wide area is a low-altitude helicopter survey; the
Department of Homeland Security has funded several helicopter
surveys of large cities, producing maps used as a baseline for
emergency response plans [1,2]. However, the high cost of oper-
ating helicopters makes it impractical to use them to monitor a
city over a long period of time.

Previous ground-based efforts have focused on source search:
traveling through a city and locating a lost or stolen source when
no prior radiological survey is available. Because the natural
background radiation varies from place to place due to geology

and construction materials, these systems must separate natural
variation from variation due to a target radioactive source, usually
by assuming that natural variation is much smaller than that
caused by the target source, or by examining only the energy
ranges typical of target sources [3]. This limits their sensitivity—a
small target source may hide among the variation in the natural
background, or may emit at energies not chosen for targeting.

A long-term radiation surveillance system could avoid this problem
by comparing newly recorded spectra with previous observations at the
same location. For example, we previously developed the SCRAM algo-
rithm, which is meant to be used with mobile detectors that repeatedly
patrol the same area, recording spectra with timestamps and GPS
locations [4]. The map is divided into grid cells and each cell's spectrum
is compared to previous observations in the same cell. SCRAM does not
discriminate between source types, instead using its knowledge of the
background spectrum to know what spectra are expected.

However, SCRAM has shortcomings: it downsamples energy
spectra into only eight bins, which potentially limits sensitivity to
small or distant sources, and it requires several repeat mappings of
the same area to estimate accurately the covariance structure
between energy bins.

We propose a new method based on Kolmogorov–Smirnov
tests which, like SCRAM, can detect any spectral changes regardless
of type, but requires no covariance estimates and no down-
sampling, and hence can work with less background data. This
method is simpler, has higher power and provides better source
localization than SCRAM. To guide detector deployment, we present
simulations and visualizations of statistical power which allow
operators to find areas of vulnerability.
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2. Data

We collected our data using a 2�2 in. Bridgeport Instruments
cesium iodide spectrometer, a laptop, and a GPS unit. The spec-
trometer continuously recorded gamma rays and produced a
4096-bin spectral histogram every two seconds; the laptop then
recorded the histogram, time, and location. In typical conditions,
80–120 gamma rays were observed per histogram. An example
spectrum, consisting of typical background gamma rays and
summed over several hours, is shown in Fig. 2, while Fig. 3 shows a
sample taken near a radioactive 137Cs source.

The dataset consists of once- or twice-daily drives through
Pickle Research Campus (PRC) in the months of July and August
2012. The spectrometer and GPS unit were loaded onto a golf cart
and driven around campus for roughly half an hour. Various
spectral features at PRC, such as slightly-radioactive brick build-
ings and a radiological waste storage site, cause the area to have
total background radiation levels which vary in space by about a
factor of three; this variation is shown in Fig. 1. Cumulatively, the
data includes roughly 18 h of observations taken over 41 drives
through campus on 30 different days.

In the course of our analysis we discovered that the dataset is
contaminated: we used our Kolmogorov–Smirnov anomaly
detection algorithm (Section 3.3) to compare each day to the
previous day and identified days with unusual spectral differences,
the largest of which is likely due to a downpour of 7 cm of rain the
previous evening; rain can cause large variation in background
spectra [5,6]. In the rest of our analysis we excluded this day. (This
was the largest rain event during the dry Texas summer, and the
only to cause a noticeable anomaly.) This ensures that our esti-
mates of false positive rates (Section 3.3) do not contain true
positives; we shall instead use simulated sources of known size
and location to test our algorithms. Future work may be able to
account for rain-induced spectral changes using a model to relate
precipitation rate and radon progeny deposited by rain [7].

3. Approach

To detect radioactive sources, two things are required. The first
is a way to account for the natural spatial variation in background
spectra (Section 3.1). The second is an anomaly detection algo-
rithm which compares the background model with new observa-
tions and tests for statistically significant differences, producing a
map of anomalous regions (Sections 3.2 and 3.3). Global false
discovery control is essential to make the system practical, and the
power of the procedure needs to be established for target radio-
active sources.

The anomaly detection algorithm should use only the shape of
the spectrum, not the total count rate, since observed count rates
will vary widely depending on the detector, and a wide area
monitoring system may use different sizes of detectors mounted
on different vehicles at different heights. Also, like SCRAM, our
anomaly detection algorithm does not attempt to discriminate
between benign and threatening anomalies, instead searching for
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Example background spectrum

Fig. 2. A typical background radiation spectrum at Pickle Research Campus, com-
prising 32,173 gamma rays observed over several hours. Energy in kiloelectronvolts,
in 4096 bins, is shown on a logarithmic scale.
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Example anomaly spectrum

Fig. 3. Spectrum recorded near a sample of radioactive 137Cs. The sharp peak on the
right side of the plot, which stands out from the normal background, is the char-
acteristic 662 keV gamma ray emitted in the decay of 137Cs.
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Fig. 1. A map of Pickle Research Campus with total gamma counts per second
overlaid; counts are averaged over one month of data collection. Areas of elevated
background include the radioactive materials storage facility at the northwest
corner (A) and a cluster of large brick buildings near central campus (B). Figure
reprinted from [4].
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