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a b s t r a c t

Using the Mellin–Barnes representation, we show that Ruby's solid angle formula and some of its
generalizations may be expressed in a compact way in terms of the Appell F4 and Lauricella FC functions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ruby's formula, giving the solid angle subtended at a disk
source by a coaxial parallel-disk detector [1], is the following:

G¼ RD

RS

Z 1

0
dk

e�kd

k
J1ðkRSÞJ1ðkRDÞ; ð1Þ

where RS and RD are respectively the radius of the source and of
the detector, d is the distance between the source and the detector
and J1ðxÞ is the Bessel function of first kind and order 1.

Until [2], where an expression in terms of complete and inc-
omplete elliptic integrals has been given, it seems that Ruby's
formula had not been expressed in a closed form. A double series
representation had been previously mentioned in [3] but it was
concluded in [4] that the convergence region of this double series
is restricted in a way that when the detector is too close to the
source, one had to compute the integral by means of numerical
methods.

In the next section, we will see that with the help of the
Mellin–Barnes (MB) representation method (see e.g. [5] for an
introduction), Ruby's formula may be expressed in a compact way
in terms of the Appell function F4.

Generalizations of Ruby's formula, which have been treated
mainly in [2] but not always obtained in closed form, will also be
considered within the same approach, in a subsequent section
where their expressions in terms of the Lauricella function FC will
be given.

2. Ruby's formula

The Bessel function J1ðzÞ has the following MB representation,
valid for z40, see [5]:

J1ðzÞ ¼
1
2iπ

Z cþ i1

c� i1
ds

z
2

� �1�2s ΓðsÞ
Γð2�sÞ; ð2Þ

where, for absolute convergence of the integral, the constant c,
which is the real part of s (since the chosen integration path is a
vertical line in the s-complex plane) has to belong to the interval
�0; 12 ½ [5].

Inserting twice this integral representation in Eq. (1) we get

G¼ R2
D

4
1
2iπ

� �2 Z cþ i1

c� i1
ds
Z c′þ i1

c0 � i1
dt

RS

2

� ��2s RD

2

� ��2t ΓðsÞ
Γð2�sÞ

ΓðtÞ
Γð2�tÞ

�
Z 1

0
dk k1�2s�2te�kd; ð3Þ

where c¼RðsÞA �0; 12 ½ and c0 ¼RðtÞA �0; 12 ½.
Performing the k-integral leads to the following 2-fold MB

representation:

G¼ 1
2iπ

� �2 RD

2d

� �2

�
Z cþ i1

c� i1
ds
Z c′þ i1

c0 � i1
dt

RS

2d

� ��2s RD

2d

� ��2tΓðsÞΓðtÞΓð2�2s�2tÞ
Γð2�sÞΓð2�tÞ ;

ð4Þ
with the constraint RðsþtÞo1, which is fulfilled.

To compute this integral one can directly apply the general
method described in [6]. If one follows this approach, one will find
three double series representations (one of them being the one
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mentioned in [3] and studied in [4]), converging in three different
regions of values of the parameters RS, RD and d.

It is however even simpler to notice that, by using the duplica-
tion formula for the Euler gamma function

Γð2sÞ ¼ 1ffiffiffiffi
π

p 22s�1ΓðsÞΓ sþ1
2

� �
; ð5Þ

one has

G¼ 2ffiffiffiffi
π

p RD

2d

� �2 1
2iπ

� �2 Z cþ i1

c� i1
ds
Z c′þ i1

c0 � i1
dt

RS

d

� ��2s RD

d

� ��2t

� ΓðsÞΓðtÞ
Γð2�sÞΓð2�tÞΓð1�s�tÞΓ 3

2
�s�t

� �
; ð6Þ

which, since Γð32Þ ¼ 2=
ffiffiffiffi
π

p
, is nothing but the MB representation of

the Appell F4 function [7]

G¼ RD

2d

� �2

F4 1;
3
2
;2;2; � RS

d

� �2

; � RD

d

� �2
 !

ð7Þ

from where, by definition, one gets the double series representa-
tion:

G¼ RD

2d

� �2

∑
1

m ¼ 0
∑
1

n ¼ 0

ð�1Þmþn

m!n!

ð1Þmþn
3
2

� �
mþn

ð2Þmð2Þn
RS

d

� �2m RD

d

� �2n

; ð8Þ

where ðaÞm ¼ΓðaþmÞ=ΓðaÞ is the Pochhammer symbol.
The series (8) is the same as the one studied in [4] with

convergence region given2 by RSþRDod. This confirms the analysis
performed in [4].

The well-known analytic continuation formula [7]

F4ða; b; c; d; x; yÞ ¼
ΓðdÞΓðb�aÞ
Γðd�aÞΓðbÞð�yÞ�aF4 a; aþ1�d; c; aþ1�b;

x
y
;
1
y

� �

þΓðdÞΓða�bÞ
Γðd�bÞΓðaÞð�yÞ�bF4 bþ1�d; b; c; bþ1�a;

x
y
;
1
y

� �
ð9Þ

and the symmetric relation obtained by exchanging x with y and c
with d allow us to obtain double series representations valid in the
regions RSþdoRD and RDþdoRS.

Series representations valid in other ranges of values of the
parameters than those given above may be found in [8], where a
full analytic continuation study has been performed.

3. Generalization

The same technique may be used to compute the more general
integral:

Iðl;m1 ;…;mN Þ ¼
Z 1

0
dk kl e�kd ∏

N

j ¼ 1
Jmj

ðkRjÞ; ð10Þ

where l and the mj are such that the integral converges, and Rj40
for all jAf1;…;Ng.

In this case, we use the following MB representation for the
Bessel functions (valid for z40Þ:

JmðzÞ ¼
1
2iπ

Z cþ i1

c� i1
ds

z
2

� �m�2s ΓðsÞ
Γð1þm�sÞ; ð11Þ

where c¼RðsÞA �0;RðmÞ=2½.
Notice that this integral is defined only when m40 but we will

see that one can relax this constraint at the end of the calculations
by appealing to analytic continuation.

Inserting Eq. (11) in Eq. (10) we get

Iðl;m1 ;…;mN Þ ¼ ∏
N

j ¼ 1

1
2iπ

Z cj þ i1

cj � i1
dsj

Rj

2

� �mj �2sj ΓðsjÞ
Γð1þmj�sjÞ

" #

�
Z 1

0
dk e�kdklþ ∑

N

j ¼ 1
ðmj�2sjÞ: ð12Þ

The k-integral gives d�1� l�∑N
j ¼ 1ðmj �2sjÞΓð1þ lþ∑N

j ¼ 1ðmj�2sjÞÞwith
the constraint Rð1þ lþ∑N

j ¼ 1ðmj�2sjÞÞ40. Let us suppose that this
constraint is fulfilled (in all particular cases considered in [2], it is
always possible to satisfy this constraint by an appropriate choice of
the cj).

Then, applying Eq. (5), one may conclude that

Iðl;m1 ;…;mN Þ ¼
1ffiffiffiffi
π

p 2
d

� �l1
d

∏
N

j ¼ 1

Rj

d

� �mj 1
2iπ

Z cj þ i1

cj � i1
dsj

Rj

d

� ��2sj ΓðsjÞ
Γð1þmj�sjÞ

" #

�Γ ∑
N

j ¼ 1

mj

2
�sj

� �
þ lþ1

2

 !
Γ ∑

N

j ¼ 1

mj

2
�sj

� �
þ l
2
þ1

 !
:

ð13Þ

As a particular check, it is easy to derive Eq. (6) from Eq. (13) by
putting N¼2, m1 ¼m2 ¼ 1, R1 ¼ RD, R2 ¼ RS and l¼ �1, and multi-
plying by RD=RS.

In the case where ∑N
j ¼ 1mj=2þðlþ1Þ=2 and ∑N

j ¼ 1mj=2þ l=2þ1
are positive numbers, we recognize in Eq. (13) the MB representa-
tion of the multiple Lauricella function F ðNÞC (modulo an overall
factor) [9].

We therefore have

Iðl;m1 ;…;mN Þ ¼
1ffiffiffiffi
π

p 2
d

� �l1
d

Γ ∑N
j ¼ 1

mj

2
þ lþ1

2

� �
Γ ∑N

j ¼ 1
mj

2
þ l
2
þ1

� �
∏N

j ¼ 1Γð1þmjÞ
∏
N

j ¼ 1

Rj

d

� �mj

�F ðNÞC ∑
N

j ¼ 1

mj

2
þ lþ1

2
; ∑

N

j ¼ 1

mj

2
þ l
2
þ1;1þm1;…;1þmN ; �

R2
1

d2
;…; �R2

N

d2

 !
:

ð14Þ

Lauricella functions are the generalizations of Appell functions and
F ð2ÞC is, obviously, nothing but the Appell F4 function.

The integral representation in Eq. (13) has been obtained with
the initial constraint that the mj and Rj are strictly positive for all
jAf1;…;Ng. By analytic continuation, it is however possible to
include other values for these parameters (and, among others, the
important case where some of the mj are equal to zero) since
Eq. (13) is defined as long as the quantities ∑N

j ¼ 1mj=2þðlþ1Þ=2
and ∑N

j ¼ 1mj=2þ l=2þ1 are not negative integers. In fact, in all
particular situations considered in [2] these two quantities are
positive numbers. Therefore one may directly use Eq. (14) to
compute them and this is done in a subsection to follow.

Using the multiple series representation of the multiple Lauri-
cella function F ðNÞC [9], one obtains:

Iðl;m1 ;…;mN Þ ¼
1ffiffiffiffi
π

p 2
d

� �l1
d

Γ ∑N
j ¼ 1

mj

2
þ1þ l

2

� �
Γ ∑N

j ¼ 1
mj

2
þ l
2
þ1

� �
∏N

j ¼ 1Γð1þmjÞ
∏
N

j ¼ 1

Rj

d

� �mj

� ∑
1

k1 ¼ 0
⋯ ∑

1

kN ¼ 0

∑N
j ¼ 1

mj

2
þ lþ1

2

� �
∑N

j ¼ 1kj

∑N
j ¼ 1

mj

2
þ l
2
þ1

� �
∑N

j ¼ 1kj

∏N
j ¼ 1ðð1þmjÞkj kj!Þ

�ð�1Þ
∑
N

j ¼ 1
kj R1

d

� �2k1
⋯

RN

d

� �2kN
ð15Þ

where as before ðaÞm is the Pochhammer symbol.
This multiple series converges in the region ∑N

j ¼ 1jRjjo jdj [9].

2 The convergence regions of the double series representations of the Appell
functions are well-known: it is straightforward to get them by Horn's method, see
for instance [6] or [7].
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