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a b s t r a c t

A Bayesian probabilistic data analysis method for energetic proton and ion data from charged particle
telescopes in space is described. The telescope is assumed to consist of only a series of planar silicon
detectors with graduated thicknesses. The method is based on a range-straggling function and makes
optimal use of energy loss measurements in each detector. It provides accurate incidence angle estimates
for particles stopping in the telescope, allowing accurate element identification and possible isotope
identification. It also provides energy estimates for high-energy particles going through the telescope
without stopping. Examples are shown for simulated telescope design performance tests and application
to real space-particle data.

Published by Elsevier B.V.

1. Introduction

Charged particle telescopes, consisting of a series of aligned
planar silicon detectors, have been used frequently in space
applications, because of their low mass and power requirements
and ability to make accurate energy measurements [1–4]. For
protons the useful kinetic energy range is �10 MeV–1 GeV. Data
analysis using the ΔE�E0 technique provides element discrimina-
tion for particles stopping in the telescope [1,5]. Isotope discrimi-
nation is also possible when a tracking system for determining
incidence angle is included [2]. However, such a system is complex
and often unavailable, so it is of interest to evaluate optimal
performance without one. (In this context, “optimal” refers to the
most accurate possible results for a given telescope design,
accounting for all measured data.) An optimal method of energy
estimation for high-energy particles, that go through the telescope
without stopping, is also of interest.

Two main problems must be addressed in any data analysis
scheme: (i) path length variations caused by particles incident on
the telescope at differing angles, and (ii) range straggling, which
causes fluctuations in the energy loss of particles with known
incident energy in a known thickness of silicon. To address each of
these, a Bayesian probabilistic data analysis method is described,
based on a theoretical straggling function, that makes optimal use
of all energy loss measurements. Small-angle nuclear scattering is
neglected and it is assumed that there is no passive absorbing
material between detectors. Apart from these limitations, the
method is of general applicability to proton and heavy-ion data.

2. Probabilistic formulation

The straggling function f ðΔ; E; xÞ is the normalized probability
density function (PDF) for energy loss Δ in a thickness x of silicon
from an initial energy E. For a particle entering a telescope of N
detectors, with thicknesses fxi; i¼ 1…Ng, the energy losses in
consecutive detectors are independent random processes. There-
fore, the joint conditional PDF for a set of energy losses
fΔi; i¼ 1…ng with nrN, given incident energy E and angle θ, is
the product of the individual straggling functions accounting for
energy loss in previous detectors:

f nðE; θÞ ¼ ∏
n

i ¼ 1
f ðΔi; E�Ei�1; xi sec θÞ ð1Þ

where the total energy loss up to detector i is

Ei ¼ ∑
i

j ¼ 1
Δj ð2Þ

and x¼ xi sec θ is the path length in detector i. If there is no prior
knowledge of E or θ then, from Bayes' theorem, f nðE; θÞ is also the
unnormalized joint conditional PDF for E and θ given a set of
measured Δi (the set is referred to as an “event”).

If energy losses are recorded in detectors 1 through k with
koN, so that the particle stopped in detector k, then E¼ Ek, the
sum of all energy losses. Straggling in detector k is irrelevant
because the particle lost all of its remaining energy there, and
therefore n¼ k�1. An estimate of θ is the expectation, or mean
value:

θ ¼ 1
Ak

Z
θf k�1ðEk; θÞ dθ ð3Þ
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where

Ak ¼
Z

f k�1ðEk; θÞ dθ ð4Þ

Depending on the design of the telescope, it may be possible
for a particle to trigger detector k and then exit the telescope
without triggering detector kþ1. Then it is unclear whether it
actually stopped in detector k. In such cases, it is necessary to
determine whether the total energy loss Ek is consistent with a
stopping particle and to discard events for which it is not. This is
similar to the case in which all N detectors are triggered.

If losses are recorded in all N detectors then the particle may
have stopped in detector N or it may have gone through. The joint
PDF for E and θ, accounting for both possibilities, is
δðE�ENÞf N�1ðEN ; θÞþ f NðE; θÞ. Estimates of E and θ are

E ¼ 1
BN

ENANþ∬ Ef NðE; θÞ dE dθ
� � ð5Þ

θ ¼ 1
BN

Z
θf N�1ðEN ; θÞ dθþ∬ θf NðE; θÞ dE dθ

� �
ð6Þ

where

BN ¼ ANþ∬ f NðE; θÞ dE dθ ð7Þ

The probability that the particle stopped in detector N is AN=BN . If
it is unclear whether the particle entered through the front or back
of the telescope then both possibilities can be similarly included.

If element or isotope identification is required then each
possible particle species has its own straggling function based on
its mass and charge. The corresponding probability densities
should be combined to determine the most likely species. For
example, if a particle stopped in detector k and there are two
possible species with straggling functions f and g, then the
combined density, replacing f k�1 in Eqs. (3) and (4), is
f k�1þgk�1. The probability that the particle is of the f species is

Pf ¼
R
f k�1ðEk; θÞ dθR ½f k�1ðEk; θÞþgk�1ðEk; θÞ� dθ

ð8Þ

Other possible species can be added to the denominator.

3. Straggling function

The method just described is generally applicable if the strag-
gling function is known. For fast particles through thin detectors,
complex techniques are required to compute f, though it may be
approximated by a Landau distribution [6]. For slower particles or
moderate detector thicknesses, f is well represented by a Vavilov
distribution [7,8]. For yet slower particles and/or thicker detectors,
a Gaussian or distorted Gaussian approximation is adequate. The
log-normal distribution of Chibani [9] is used here. It has the
advantages of allowing analytic evaluation and rapid sampling for
Monte Carlo simulations. It is considered valid for 0:3oκo10,
where κ is the Vavilov parameter [9]. For κ410 a Gaussian
approximation is appropriate. Examples of particle energies cor-
responding to each of these cases are given in the following
sections. In both, a mean energy loss Δ must be computed
separately, as follows.

The range R(E) of charged particles in Si is related to stopping
power dE=dx that, for all energies of interest, is well represented by
the Bethe formula [8]. Here, proton range Rp(E) is computed from a
log-polynomial fit to a projected range table for protons in Si from
NIST/PSTAR [10]. For heavier particles the range is well approximated
by the scaling relationship RðEÞ ¼ RpðE=MÞM=Z2 [1], where M is
the particle mass in proton mass units, and Z is the charge number.

The mean energy loss in thickness x is then

Δ ¼ E�R�1ðRðEÞ�xÞ ð9Þ

where the inverse range R�1 is the energy of a particle with the
given range of its argument.

Sample straggling functions f ðΔ; E; xÞ for protons in Si, with
x¼1 mm and various incident energies, are shown versus Δ in
Fig. 1. Comparing to the Vavilov distribution, the log-normal
approximation is seen to be reasonably accurate for E ≲ 50 MeV
in this case.
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Fig. 1. Sample straggling functions f versus energy loss Δ for protons in 1 mm of Si,
using the log-normal approximation [9] (color coded by initial energy E) and the
Vavilov distribution [7] (dashed). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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Fig. 2. Examples of simulated probability density f k�1 for incidence angle θ of
stopping protons with a 5-detector telescope described in the text. Energy losses Δi

were sampled from straggling functions with initial E¼30 MeV incident at θ¼251.
Separate colors are used to distinguish each case. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)
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