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a b s t r a c t

The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay
sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the
needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian
approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertain-
ties in the instrument calibration. These approximations are applicable over a wide range of applications,
but are of limited use in low-count applications, when high confidence values are required, or when
systematic uncertainties are significant. One proposed modification to the Currie formulation attempts
account for systematic uncertainties within a Gaussian framework. We have previously shown that this
approach results in an approximation formula that works best only for small values of the relative
systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it
significantly overestimates the detection limit or gives infinite or otherwise non-physical results for
larger systematic uncertainties where such a correction would be the most useful. We have developed an
alternative approach for calculating detection limits based on realistic statistical modeling of the
counting distributions which accurately represents statistical and systematic uncertainties. Instead of a
closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection
limits can be obtained by this method for the general case.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The detection limit (LD) or Minimum Detectable Activity (MDA) is
an a priori estimate of measurement sensitivity. A well-established
concept in the field of ionizing radiation measurements, it is based
on straightforward principles of classical hypothesis testing as
originally set out by L.A. Currie in his landmark 1968 paper on the
subject [1]. In the past, calculations of the detection limit have almost
universally relied on the asymptotic Gaussian approximation to
Poisson counting statistics; they have also typically neglected to
treat systematic uncertainties, such as those related to calibration
parameters, which can nevertheless be significant components of the
total measurement uncertainty and thus important contributors to
an evaluation of measurement sensitivity.

One recent attempt to update the detection limit formalism was
described in the ISO 11929:2010 standard [2], which sought to set the
problem of detection limits on a rigorous Bayesian theoretical footing,
while also extending the standard method to incorporate systematic
uncertainties in calibration parameters. A shortcoming of that method

is that it fails to make use of significant prior information available
in the form of obvious physical constraints on the measurement
problem. As a result inappropriate assumptions of Gaussian behavior
are used to approximate the posterior distributions of the calibration
parameters. The result is an approximation formula that works best
only for small values of the relative systematic uncertainty, for which
such a modification of Currie's method is the least necessary. For lar-
ger systematic uncertainties, for which such a correctionwould be the
most useful, the ISO 11929 formula significantly overestimates
the detection limit and can return infinite or otherwise non-phy-
sical results [3].

In contrast to that approach we have developed a method
following from Currie's original hypothesis testing definition, which
accurately accounts for systematic uncertainties of any magnitude
through physically realistic statistical modeling of counting distribu-
tions and calibration parameter uncertainties. Bayesian inference is
used to determine the forms of the probability distributions, utilizing
relevant prior information including physical constraints and the
explicitly Poisson nature of the counting experiment itself.

This new method provides the same improvements over the
traditional Currie approach that were intended by the ISO 11929
standard, but avoids the problems of infinities and over-estimates
that can be generated by the explicit formulas prescribed there.
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This makes the new method ideally suited for evaluating detection
limits (or MDAs) for in vivo, in situ, waste disposition, or other
similar applications where large relative calibration uncertainties
are common. A detailed development of the calculational method
is presented, and results are calculated and compared with both
the traditional Currie approach and that of ISO 11929.

2. Definitions

Following Currie, we define the detection limit as “the ‘true’ net
signal level which may be a priori expected to lead to detection”
[1]. Signal detection is here defined in terms of a traditional
hypothesis testing problem: the null hypothesis, H0, describes
the possibility that there is no signal present in our future meas-
urement and that all counts observed will be due only to a back-
ground process. It is assumed that some estimate μ̂b of the mean
of the background process and an uncertainty σðμ̂bÞ in that esti-
mate have previously been obtained, or will be obtained directly
from the future measurement itself.

The manner in which the background estimate and its uncer-
tainty are obtained can vary depending on the type of measure-
ment under consideration. In single-channel measurements, as are
often done in alpha and beta counting applications, a non-radi-
oactive “blank” count is often performed for this purpose prior to
the sample assay. In multichannel spectroscopic measurements, it
is common to specify “sidecar” regions on either side of the phot-
opeak region of interest (ROI) which can be used to estimate the
continuum counts beneath the peak. Because the count times of
blank and sample measurements may differ (or analogously the
widths of the peak and the combined sidecar regions may differ) a
scale factor may be applied to estimate the sample background,
with the result that the pure Poisson relationship σ2ðμ̂bÞ ¼ μ̂b does
not hold. More complicated techniques such as spectral unfolding
are also common, and will also tend to violate assumptions of
purely Poisson statistical behavior.

To help decide whether or not a detection has occurred, the
critical level LC is defined as the smallest number of counts m such
that the probability of obtaining m or fewer counts the experiment
is greater than or equal to (1�α) if H0 is true; α is the probability
of a Type I error (i.e. a false detection). We can express this in
mathematical form as

~LC �min m : ð1�αÞr
Xm
b ¼ 0

PrðbjH0Þ
( )

ð1Þ

where PrðbjH0Þ is the a priori distribution of the number of
background counts b according to the null hypothesis. Detection
occurs when the observed count equals or exceeds the critical
level. The quantity (1�α) is called the significance of the detection
test. The standard deviation of the a priori background distribution
is denoted as σ0; we expect it to encompass both the uncertainty
in the true mean background and the usual Poisson counting flu-
ctuations about that mean.

Here we have differed slightly from Currie's convention by
defining the critical level in terms of the total counts observed;
Currie defined it in terms of the net count observed after sub-
tracting the expected (mean) background. This notational differ-
ence simplifies the mathematics somewhat for the general non-
Gaussian case which we address in later sections.

The second hypothesis is the test or alternate hypothesis, H1,
which describes the possibility that the observed counts are due to
a combination of the background process and some signal process
which is the goal of the experiment to detect. The a priori
probability distribution for observing g gross counts under the
alternate hypothesis we denote as PrðgjH1;μsÞ, where we have
made explicit that the mean of the signal process, μs, is one of the

parameters of the distribution. The detection limit is then defined
as the value of the mean of the signal process such that the
probability under H1 of obtaining gross counts g less than critical
level is equal to some value β, the probability of a Type II error (i.e.
a false negative result):

LD � μs : β¼
X~LC
g ¼ 0

PrðgjH1;μsÞ: ð2Þ

The quantity (1�β) describes the confidence of detection under
H1.

For Currie, the detection limit and the critical level are both
defined in terms of counts at the detector. The critical level is thus
properly restricted to take on only non-negative integer values.
The detection limit, since it is represents the mean count rather
than an observed value, may take real values but must still be non-
negative. Both the background and gross counting distributions
are discrete, and must be normalized on the interval from zero to
infinity. Eqs. (1) and (2) completely define the detection limit
problem, in the most general way possible consistent with both
Currie's original formulation and the obvious natural constraints of
the radiation measurement problem. Evaluating the detection
limit is in principle a simple matter of selecting the correct value
of the mean signal necessary to satisfy Eq. (2).

A commonly used quantity closely related to the detection limit
is the Minimum Detectable Activity (MDA), which is defined in
terms of activity A present in the sample. The equivalent equation
to (2) for defining the MDA can be written as

MDA� A : β¼
X~LC
g ¼ 0

PrðgjH1;AÞ
8<
:

9=
; ð3Þ

which can be evaluated by recognizing that the mean net signal is
related to the activity by a calibration factor ν:

μs ¼ νA: ð4Þ

The calculation of the calibration factor and its uncertainty will
differ by application. As an example, consider the case of a simple
spectroscopic measurement in which the activity A is determined
from a measured net peak area N, a previously measured detection
efficiency ε at the energy of interest, the assay counting time T,
and a branching ratio or gamma-ray yield Y which is usually obt-
ained from published nuclear data tables:

A¼ N
εTY

: ð5Þ

The calibration factor in this case is the quantity ν¼ εTY , and its
relative uncertainty is typically evaluated as

σ2ðνÞ
ν

¼ σ2ðεÞ
ε

þσ2ðYÞ
Y

ð6Þ

where is has been assumed, as is most often the case, that the
uncertainty in the count time is so small that it can be ignored.

It is worth noting that the ISO standard 11929(2010) [2] con-
flates the concepts of detection limit and MDA by calculating the
detection limit directly in units of activity present in the sample.
We find it preferable to maintain the distinction between the two.

3. Solutions in the Gaussian limit

Approximate solutions to the detection limit or MDA are rea-
dily obtained by representing both the background and gross cou-
nting distributions described above with Gaussian distributions.
The conditions defined by (1) and (2) or (3) are diagrammed for
the Gaussian limit in Fig. 1.
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