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ARTICLE INFO ABSTRACT

Available online 17 December 2014 In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding
the attributes of both the radioactive and nonradioactive components of the objects being imaged.
However, for optimum benefit to the community, spatial attributes need to be determined in a
quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in
coded-aperture imaging, we present uncertainty matrices containing covariance terms between image
pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in
mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing
simulated point source data, we found that correlations arose when two or more image pixels were
summed. Furthermore, we found that the presence of correlations was heightened by the process of
over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with
increased mask rank. As an application of this result, we explored how statistics-based alarming is
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impacted in a radiological search scenario.
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1. Scope, motivation and focus

Originally designed as a method to observe high-energy photons
in astronomical applications [1,2], coded-aperture imaging is a
mature, indirect technique for obtaining spatial information in a
variety of imaging applications [3,4]. As an elaborate extrapolation
from a single pinhole aperture, a mask with structured pattern is
placed between a radiation source and a position-sensitive detector,
resulting in a modulated hit pattern on the detector [1-4]. The
resulting hit pattern is computationally decoded to produce an
image of radiation emanating from the field-of-view.

Coded apertures are currently utilized across a spectrum of
imaging applications, including astrophysics [5,6] and medicine
[7-9]. The nuclear security community has successfully applied
coded-aperture techniques to gamma-ray imaging of radioisotopes
for arms control and nuclear nonproliferation applications [10]. In
certain cases, the coded-aperture technique provides simultaneously
collected spectral information in addition to the spatial location of the
sources in question [4,11]. Both of these capabilities are valuable to
the nuclear community since they provide access to the shape, size,
isotopic composition, and activity of the radioisotopes of interest.

In order to be of optimum benefit to the community, quantitative
results that rely on statistically meaningful analyses of imaged data are
needed. However, coded-aperture imaging was designed for point

* Corresponding author.
E-mail addresses: fleenor@roanoke.edu (M.C. Fleenor),
blackstonma@ornl.gov (M.A. Blackston), ziockk@ornl.gov (K.P. Ziock).

http://dx.doi.org/10.1016/j.nima.2014.12.028
0168-9002/© 2014 Elsevier B.V. All rights reserved.

source imaging, and for cases where sources occupy a single pixel,
uncertainties are well-known. Coded-aperture imaging can also be
used for extended sources. For point sources that contain strength in
adjacent image pixels or for extended sources that cover multiple
image pixels, a measure of the total strength of a source requires
summing multiple image pixels together. If correlations between
image pixels exist, then covariance terms must be properly included
in the uncertainty calculation.

The focus of the current study is on the calculation of the
uncertainties for the sum of multiple image pixels and these
uncertainties as a function of a few important imaging variables.
Unlike previous studies, we do not presuppose the absence of
correlations when summing multiple image pixels during specific
calculations of total source uncertainty. The article maintains the
following outline: Section 2 introduces the imaging variables
manipulated in the current study. In Section 3, mathematical
formalism of the covariance problem is developed, while Section 4
examines image pixel values for degrees of correlation. Section 5
presents the degree of correlation as a function of the three image
variables, and Section 6 discusses applications related to the detec-
tion significance within the nuclear security sector.

2. Coded-aperture imaging variables of interest

The imaging variables adjusted in the current work are mask
rank, whether or not anti-mask data are included, and mask-
pattern oversampling. Each of these variables is important for
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coded-aperture imaging performed with MURA mask, and may
not be applicable to other mask types. A modified uniformly
redundant array (MURA) is a common mask pattern yielding high
signal-to-noise images [12]. They consist of an equal number of
open and closed mask elements, giving an open fraction of
about 50%.

The rank of the mask, R, refers to the prime number on which
the MURA pattern is based. Even though other mask pattern
arrangements have been found to equal and/or surpass MURA
signal-to-noise ratios [13,8,14,15], MURA patterns exhibit ideal
imaging properties because the number of artifacts is minimized
due to auto-correlative properties [16]. In addition, due to the anti-
symmetry of the MURA pattern under rotation, background
subtraction is uncomplicated and efficient [17].

The accumulation of anti-mask detector counts afforded by
MURA patterns provides a significant advantage for image quality
[10]. In rotating an anti-symmetric mask by 90° and exposing the
detector plane, an anti-mask exposure is obtained because the
spatial locations of the open and closed mask positions are
exchanged [17,18]. Subtracting the anti-mask counts from the
mask counts suppresses image artifacts and provides an in situ
background subtraction [11].

The concept of over-sampling relates to the number of detector
pixels that sample each mask opening. In a one-to-one mapping
between the detector plane and mask, each opening or closure in
the mask is resolved by one detector pixel. This relationship
between mask and detector is referred to as single-sampling.
When an image is double-sampled, the number of detector pixels
covering each mask opening is increased by 22 (two times increase
in each dimension). The process of over-sampling serves two
purposes related to image quality. First, over-sampling aids in
the aesthetic problem of pixelation. For detector planes and
instrumentation with an inherently large pixel size, the fourfold
increase in the number of image pixels increases the spatial
sampling, allowing the shape of objects in the field-of-view to
be more easily observed. Second, the number of effective lines-of-
sight forming the image increases, which adds to the information
present when reconstructing. By remembering that the mask is an
effective conglomeration of individual pinholes, each pinhole
forms an unique response on the detector (i.e., a basis vector).
When the detector plane is over-sampled, there is an increase in
the number of basis vectors available to reconstruct the image.
However, these basis vectors are not completely independent;
rather, they are linear combinations of the original, single-
sampled, orthogonal basis vectors.

3. Correlation and covariance within coded-aperture imaging

Since coded-aperture image reconstruction involves a cross-
correlation of the detector hit pattern with the MURA mask
pattern [3,12], the value of each reconstructed image pixel (1)
can be expressed as
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where D; represents the measured detector counts in pixel i, and
M, is the transfer (or mask) function which is based on the MURA
mask pattern with a value of +1 for open mask elements and —1
for closed mask elements (with the exception of the central mask
element, which is closed but always set to +1 in order to achieve a
delta function response for a point source [19]). Note that in our
notation, a single index is used for an image pixel; it should be
understood that two-dimensional image pixel indices are col-
lapsed into one index for clarity in the expressions that follow.
If the detector pixels (D;) are assumed to have independent errors,

i.e., no covariance (O'D D= =0, for i # j), the uncertainty on any single
image pixel follows as
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where the partial derivatives are given by the decoding array
sampled for a particular image pixel:
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Also since the associated errors for the detector pixels are
determined by Poisson statistics (i.e., op, ~ \/D;):
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where N is simply the total number of counts in the detector from
both source and background. Therefore, the uncertainty on any
single-image pixel simplifies to
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i.e,, the variance. When including anti-mask data (see Section 4.1),
the total error for single-image pixels will take the form:
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where the superscripts “M” and “A” represent the detector counts
in a given mask or anti-mask exposure, respectively.

At this point, we may be tempted to naively assume that the
total error for the sum of two image pixels is
o1, .1, =01, +op, =2N. (6)
However Eq. (6) assumes an independent nature for the image
pixel uncertainties and the absence of any correlation between
them. Until this assumption can be confirmed for multiple image
pixels, we must calculate the covariances between image pixels,
namely, a, ;, [20]. Note that in Eq. (1) the vector containing
detector counts is the same for each image pixel calculation. The
reapplication of the entire dataset to calculate each image pixel
value ensures that the image pixel uncertainties will be correlated,
which points to the need for the use of the full covariance matrix.
Therefore, if two image pixels are summed, the uncertainty for the
sum is
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Explicitly, the covariance term in Eq. (7) takes the following form:
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Because we are assuming that the detector pixel uncertainties are
uncorrelated ((TDD =0), the second term in Eq. (8) goes to zero
and the uncertamty for the sum of two image pixels becomes
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where the first two terms are instances of Eq. (2), and the third
term is the remainder of Eq. (8). Having established the values of
the partial derivatives as decoder elements of +1 and knowing
the detector pixel counts, the uncertainties for image pixel sums
are calculable. Further, it is clear from Eq. (9) that the first two
partial derivative coefficients are squared, giving always + 1, while
the partials in front of the third term could be + 1. To verify the
mathematical result, an examination of simulated coded-aperture
images is now presented.
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