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a b s t r a c t

A relatively simple and accurate analytical model for studying the reflectivity of neutron multilayer
monochromators and supermirrors is proposed. Design conditions that must be fulfilled in order to reach
the maximum reflectivity are considered. The question of the narrowest bandwidth of a monochromator
is discussed and the number of layers required to build such a monochromator is derived. Finally, we
propose a new and efficient algorithm for synthesis of a supermirror with specified parameters and
discuss some inherent restrictions on an attainable reflectivity.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multilayer structures have found a wide application in neutron
instrumentation as monochromators, polarizes and supermirrors
[1,2]. The latter ones, for instance, are commonly used nowadays
at research reactors for construction of neutron guides with
enhanced angular acceptance designed to transport neutrons
over long distances. Multilayer supermirrors also find use in
neutron focusing devices [3–5] opening a new way in neutron
instrumentation.

Generally, a multilayer structure represents a thin film system
composed of layers of two different materials alternatively and
repeatedly deposited on a flat substrate (Fig. 1).

These materials are chosen to have high and low effective
potentials for neutrons (also known as neutron optical potentials)
and, therefore, a multilayer system can be considered as a sequence
of one-dimensional square-well potentials. During propagation
through the system a partial reflection and transmission of a neutron
wave occurs at every interface resulting in appearance of multiple
waves within the system (see Fig. 1). In the case of a periodic
structure, the multiple wave interference leads to distinctive
band structures in the energy spectrum of the beams reflected
from or transmitted through the multilayer. Hence, with a
proper selection of the layer materials and thicknesses one can, in
principle, built a system with desired spectral properties. In the
present paper we propose a relatively simple and accurate analytical

method for studying the reflectivity, R, of multilayer mirrors and
apply this method for design of two main systems which have an
extensive application in neutron instrumentation: (a) a very narrow
bandwidth system for a neutron monochromator and (b) a very wide
bandwidth system for a neutron supermirror. We begin with the
multilayer structure made up as a sequence of identical bilayers
repeated many times in one direction where each bilayer consists of
two thin films of different materials. Such systems are widely used as
monochromators in neutron optics (see, e.g., [6–9]). We shall find
conditions that must be fulfilled in order to attain the maximum
reflectivity for neutrons with a fixed incident wave vector. We then
evaluate the bandwidth and the number of bilayers required to build
such a monochromator.

We next apply the obtained results for the synthesis of a
neutron supermirror. In that system, successive bilayers vary
gradually in thickness in such a way that the neutron reflectivity
displays a very wide bandwidth [10–19]. We introduce a new and
efficient algorithm for design of a supermirror with specified
parameters and discuss some inherent limitations on an attainable
reflectivity.

2. General remarks

For a given material an effective potential, U, is defined as

U ¼ 2πℏ2

mn
∑
j
Njbj; ð1Þ

where mn is the neutron mass, bj is the bound coherent scattering
length and Nj is the number density of nuclei. The summation runs
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over all elements and isotopes that constitute the layer. It is worth
noting that in magnetic materials the effective potential will also
include a magnetic interaction of neutrons with matter. This
obviously opens a way for construction of polarizing devices. In
the present paper we do not give a special consideration to that
case since all formulae for polarizing systems can be obtained
straightforward from our results derived for the general case of
wave propagation in a one-dimensional potential.

It is evident that neutron waves propagating through a multilayer
structure undergo multiple reflections at interfaces and the resulting
reflectivity and transmittance of the system are determined by the
interference of all the multiple reflected waves. The interference
pattern depends apparently on the phases of summed waves and,
thus, on the thicknesses of the layers and the magnitudes of the
neutron wave vectors within the layers. The latter ones are defined by
the following expression:

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

ℏ2 ðE0−UÞ;
s

ð2Þ

where E0 is the energy of an incident neutron in vacuum. Generally, in
order to calculate the phase of the wave at a given point one needs to
know the magnitude of the wave vector and the direction of the wave
propagation. However, for a one-dimensional potential structure
the problem can be simplified significantly. Indeed, in that case
the components of the neutron momentum which are parallel to
the multilayer surface do not vary when the neutron travels through
the interface between two different media. Thus, these components of
the neutronwave vector and the part of the neutron energy associated
with those components are constant and they can be omitted from the
subsequent consideration. As a result the wave propagation through
the system can be characterized merely by the component normal to
the multilayer surface (see, e.g., [13,17,20])

k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

ℏ2 ðE0⊥−UÞ
s

ð3Þ

with E0⊥ being the part of the incident neutron energy that corre-
sponds to this component. Therefore, we reduce the problem of
finding the specular reflection coefficient of neutrons with the wave
vector k

!¼ ð k!jj; k
!

⊥Þ incident upon a multilayer to the problem of
finding the specular reflection coefficient of neutrons with the incident
wave vector k

!¼ k
!

⊥. For simplicity we shall omit the sub index “⊥”
from our subsequent calculations keeping in mind that only compo-
nents normal to the surfaces (interfaces) are considered.

3. Multilayer system composed of identical bilayers: neutron
monochromator

We assume first that the multilayer system is composed of thin
films of non-absorbing and non-scattering materials. This is a
reasonably good approximation since in most cases absorption
and scattering are very low and can be initially neglected. We shall
discuss their effect on the reflectivity later when we present our
results obtained for supermirrors. Next, we postulate that in the
case of the total reflection (i.e., R¼ 1) the neutron flux through any
plane, which is located within the multilayer parallel to the
surface, has to be equal zero. This postulate looks obvious and
we apply it below to study the reflectivity from a multilayer
system.

To find the flux within a multilayer we have to solve the
quantum-mechanical problem of a neutron wave traveling though
the system with one-dimensional periodical potential (see Fig. 2).

In quantum mechanics a flux, F, is defined as

F ¼ ih
2m

ðψ ⋅∇ψn−ψn⋅∇ψÞ; ð4Þ

where ψ and ∇ψ are the neutron wave function and its gradient
and the asterisk denotes the complex conjugate. In the particular
case of a one-dimensional potential the gradient becomes merely a
derivative along the normal to the interface. The wave function
within the thickness of any layer can be written in a common way
(see Fig. 2)

ψ ¼ ψ ðþÞ þ ψ ð−Þ≡AexpðikxÞ þ Bexpð−ikxÞ: ð5Þ
Here A is the amplitude of the wave ψðþÞ traveling in the

direction of the incident neutron wave and B – the amplitude of
the wave ψð−Þ traveling in the opposite direction; k is the
magnitude of the wave vector within the layer. On substituting
Eq. (5) into Eq. (4), we obtain

F ¼ kh
m

ð Aj2− Bj2Þ:
���� ð6Þ

We define now a reflectance amplitude, r (a priori complex),
within a layer as

r¼ B
A
: ð7Þ

From Eqs. (6) and (7) it follows that the condition F ¼ 0 holds
only if jrj2 ¼ 1. Thus, using the postulate mentioned above, one
may conclude that jrj2 ¼ 1 is required in order that R¼ 1. The
evaluation of the parameters of the multilayer system that ensure
jrj2 ¼ 1 constitutes the main subject of our subsequent
calculations.

First we discuss the reflection of the neutron wave from a semi-
infinite multilayer in which the number of layers is infinite in one
direction. Let us consider three subsequent layers within the
multilayer (Fig. 2) which have numbers s, s+1 and s+2. By analogy
with Eq. (5) one can write the neutron wavefunction in each layer
as a sum of the waves traveling to the right and to the left:

ψ s ¼ AsexpðiksxÞ þ Bsexpð−iksxÞ ð8aÞ

ψ sþ1 ¼ Asþ1expðiksþ1xÞ þ Bsþ1expð−iksþ1xÞ ð8bÞ

ψ sþ2 ¼ Asþ2expðiksþ2xÞ þ Bsþ2expð−iksþ2xÞ: ð8cÞ
Here a subscript index was used to identify a layer. We chose

the system of coordinates with x¼0 at the interface between the
layers s and s+1. The requirement of the continuity of the wave
function and its derivative at the interfaces x¼0 and x¼a (see
Fig. 2) leads to four equations with six unknown parameters As,s+1,s

+2 and Bs,s+1,s+2.

As þ Bs ¼ Asþ1 þ Bsþ1 ð9aÞ
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Fig. 1. View of the multilayer structure composed of layers of two different
materials M1 and M2 deposited on a flat substrate. The multiple waves are shown
schematically (see text).
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