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a b s t r a c t

This paper presents the structure, design and implementation of a new way of determining the optimal
shaping in time-domain for spectrometers by means of simulated annealing. The proposed algorithm is
able to adjust automatically and in real-time the coefficients for shaping an input signal. A practical
prototype was designed, implemented and tested on a PowerPC 405 embedded in a Field Programmable
Gate Array (FPGA). Lastly, its performance and capabilities were measured using simulations and a
neutron monitor.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In spectroscopy, the information about incident particles can be
extracted from the peak amplitude of the input pulses coming
from particle detectors. This method is called Pulse Height
Analysis (PHA) and provides a value proportional to the incident
particle energy. Thus, identical particles with the same energy
must generate identical peak values. The resolution of these
systems is affected by noise. In spectroscopy, the noise is classified
into three types: white series, white parallel and 1=f noise [1].
The 1=f -parallel noise [2] is not considered in this work as the
contribution is negligible in all electronic devices used in modern
front-end electronics. On one hand, each type of noise has a
spectral density that depends on the type of detector and the
features of the spectroscopy system. In fact, some of these three
noise types could be negligible depending on the type of detector
and spectroscopy electronics. On the other hand, spectroscopy
systems have filters at the output of particle detectors or pre-
amplifiers called shapers. A basic feature of shapers is their
capability to filter out noise. This capability is generally measured
using noise indices [3]. Thus, the noise index for each type of noise

must be considered. As such, spectroscopy systems are affected by
both noise spectral density and the noise index of the selected
shaper. The Signal/Noise Ratio (SNR) is generally measured using
the Full Width at Half Maximum (FWHM) or the Equivalent Noise
Charge (ENC).

For each time-invariant spectroscopy system, at least one
optimal shaper exists. The optimal shaper depends on the spectral
density of each noise type. There exist methods to calculate the
optimal shaper, one of the most popular is described in Ref. [1].
However, the complexity of this method sometimes implies that
optimal shapers were selected using other procedures (e.g. Ref.
[4]). In this paper, a readily implementable optimal algorithm
based on simulated annealing to find out automatically a shaper
that filters the noise efficiently is developed.

This paper is structured as follows. Section 2 presents the
fundamentals of the simulated annealing algorithm and the cost
functions used in this work. Section 3 provides details of the FPGA
platform, covering both, the hardware and the software. Section 4
presents the theoretical results of the simulated annealing. Section
5 presents the experimental results. Finally, Section 6 covers the
conclusions and the future work.

2. Simulated annealing

Simulated annealing [5] is a technique for combinational
optimization problems, such as minimizing functions of many
variables. This technique was introduced by Kirkpatrick et al. [6]
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and it was motivated by an analogy to the statistical mechanics of
annealing in solids. To understand why such a physics problem
is of interest, we may consider how to coerce a solid into a low
energy state. A low energy state usually means a highly ordered
state, such as crystal lattice. To reach this state, the material is
annealed: heated to a temperature that permits many atomic
rearrangements and then cooled slowly until the material freezes
into a good crystal. Thus, simulated annealing offers an appealing
physical analogy for the solution of optimization problems, and
more importantly, the potential to reshape mathematical insights
from the domain of physics into insights for real optimization
problems.

Interest in such algorithms is intense because few important
combinational optimization problems can be solved exactly in a
reasonable time. For our purposes, a combinational optimization
problem is one in which we seek to find some configuration of
parameters that minimizes a given function which is usually
referred to as the cost function. This function is a measure of
goodness of a particular configuration of parameters. The election
of an appropriate cost function is crucial for achieving good results
using this algorithm.

The simulated annealing is an iterative algorithm. In each
iteration, it generates some random perturbation, such as moving
a particle to a new location. The random perturbations are
proportional to a simulated temperature T. Thus, at higher tem-
peratures, the probability of large moves in energy is large; at low
temperatures the probability is small. If the cost function is
reduced, the new configuration is accepted as the starting point
for the next move.

2.1. Proposed simulated annealing algorithm

In order to obtain an optimal shaper using this algorithm, the
following steps are to be taken:

1. Establish the sampling period Ts and the shaping time interval
τrange ¼ fNminTs;…;NmaxTsg, where the set fNmin;…;NmaxgAN

and NA ½Nmin;Nmax� is the shaper order equal to

N¼ τs
Ts

ð1Þ

2. Establish the number of temperature steps T ;…;0 and the
population P of individuals for each temperature step.

3. For each temperature step:

(a) Generate a population of P individuals. In this work, and
in order to reduce the processing time, we assume that
individuals follow a monotonically increasing function until
they reach the maximum, and then they follow a mono-
tonically decreasing function. Thus, for each individual,

I¼ fx1; x2;…; xN=2g j0rx1rx2r…rxN=2 ¼ 1 ð2Þ
The shaper works as a digital Finite Impulse Response (FIR)
filter. Thus xn are the coefficients of the FIR filter.

(b) Generate a shaper for each individual. In this paper, only
symmetrical shapers are considered. Thus, the generated
shaper is equal to

ς¼ fx1; x2;…; xN=2 ¼ 1;…; x2; x1g ð3Þ

(c) Combine ς with the current best shaper. The result will be
S. The weight of ς with respect to the best shaper is
proportional to T. If there is no current best shaper, S is
not combined and ς¼ S.

(d) Evaluate S according to a cost function previously selected
(see Section 2.2). If the cost function of the new shaper is
lower than the cost function of the current best shaper,
then the current best shaper is S.

4. At the end of the process, the optimal shaper will be the
current best shaper.

For all the shapers considered, the flat-top duration is equal to
Ts. When considering flat-tops with a duration of τt clock cycles, a
number of ones equal to L¼ τt=τs must be added in the middle of ς
when attempting to generate the shaper using the individual. In
this case,

ς¼ fx1; x2;…; xN=2� L=2 ¼ 1;…; xN=2þ L=2 ¼ 1;…; x2; x1g ð4Þ

However, it is important to take into account that an increasing
of the flat-top of a shaper implies an increase of parallel and
1=f noise.

The C-pseudocode of this algorithm is the following

Nrange ( fNmin…Nmaxg;
bestDuration ( meanValue(Nrange);
bestShaper ( 0…0f g;
bestMark ( 1;
for i¼1 to T — for each temperature step
for j¼1 to P

Ntmp ( bestDuration þ GenerateRandomNumber
(Nmin…Nmax)/i;
if Ntmp 4Nmax then
N ( Ntmp;

else if Ntmp o 1 then
N ( 1;

else
N ( Ntmp;

end if;
I ( GenerateRandomIndividual(N);
ς ( Shaper(I);
S ( bestShaper þς=i;
if CalculateFunctionCost(S)o bestMark then
bestMark ( CalculateFunctionCost(S);
bestDuration ( N;
bestShaper ( S;

end if;
end for;

end for;

2.2. Cost functions

In this work, the cost function is the ENC for theoretical
examples whereas for the real test, the cost function is the SNR.

2.2.1. ENC
As introduced in Section 1, the following three types of noise

are considered for calculating the ENC: series noise, parallel noise
and 1=f noise. Since the individual noise contributions are random
and uncorrelated, they add in quadrature. Therefore, and accord-
ing to Ref. [7], the ENC is equal to

ENC2 ¼ 1
2
i2nN

2
S þ

1
2
v2nC

2
i N

2
Δþ

1
2
v2fnC

2
i N

2
F ð5Þ

where vn, in and vfn are the spectral density of white series, white
parallel and 1=f noise, respectively. Ci is the sum of all shunting
capacitances of the input. Finally, N2

S , N
2
Δ and N2

F are the noise
indices for white series, white parallel and 1=f noise, respectively,
defined in Ref. [7] by N2

S ¼ 2FiTs, N2
Δ ¼ 2Fv=Ts and N2

F ¼ 2Fvf .
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