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Three different methods for multivariate random sampling of correlated resonance parameters are
proposed: the diagonalization method, the Metropolis method, and the correlated sampling method. For
small relative uncertainties (typical for s-wave resonances) and weak correlations all methods are
equivalent. Differences arise under difficult conditions: large relative uncertainties of inherently positive
parameters (typical for widths of higher-I-wave resonances) and/or strong correlations between a large
number of parameters. The methods are tested on realistic examples; advantages and disadvantages of
each method are pointed out. The correlated sampling method is the only method which produces
consistent samples under any conditions. In the field of reactor physics, these methods are mostly used
for the sampling of nuclear data, however, they may be used for any data with given uncertainties and
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1. Introduction

Following the constant fast computer development, the use of
nuclear data uncertainty information for applications in nuclear
science is becoming more and more frequent. Opposite to deter-
ministic sensitivity analysis, Monte Carlo based methods like
Unified Monte Carlo (UMC) [1] and Total Monte Carlo (TMC) [2]
have been developed in recent years. These methods enable to
asses both statistical uncertainty (by generating more particle
histories) and uncertainty due to inaccurate nuclear data (by
generating more evaluated nuclear data samples from covariance
data) of any integral parameter. Even more important is the fact
that UMC deals better with non-linearities than the traditional
generalized least-squares method.

As a part of nuclear data, resonance parameters are of utmost
importance especially when dealing with large resonance self-
shielding effects [3-5]. In general, the resonance parameters of
stronger s-waves have smaller relative uncertainties, while the
weaker higher-I-waves usually feature larger uncertainties
because of worse signal-to-background ratio in the transmission
or reaction yield measurements. The improvement of measure-
ment techniques will decrease the uncertainties in the parameters

* Corresponding author. Tel.: +386 15885326; fax: +386 15885454.
E-mail addresses: gasper.zerovnik@ijs.si (G. Zerovnik),
r.capotenoy@iaea.org (R. Capote), andrej.trkov@ijs.si (A. Trkov).

0168-9002/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.nima.2013.05.024

of the existing resonances, while on the other hand this will
inevitably lead to discovery of new, weaker resonances with even
larger relative uncertainties.

The main objective of this paper is to find optimal sampling
procedure for resonance parameters considering possible large
relative uncertainties (i.e. reducing or completely avoiding nega-
tive values for inherently positive parameters, e.g. resonance
widths) and strong correlations. Sampling in diagonal space,
sampling by Metropolis algorithm [6], and the so-called correlated
sampling method [7] are considered. In Section 2, these methods
with several variations are briefly reviewed. A more detailed
description of the methods can be found in the Appendices.

The two main issues arising at different conditions will be
addressed in this paper. First, strong correlations between the
parameters may require a large increase in numerical effort which
may limit the applicability of some of the methods especially
when the set of coupled parameters is increasingly large. And
second, large uncertainties lead to negative values of inherently
positive parameters [8], e.g. resonance widths or reaction cross-
sections. This may be avoided in different ways: by zero cutoff, by
using positive distribution functions like the log-normal distribu-
tion, etc. However, the former is on shaky physical grounds and
increasingly decreases the standard deviation of the sampled
parameters when uncertainties become larger, where the latter
leads to substantial biases in the mean value and standard
deviation of the sampled parameters. If the uncertainties are
extremely large (above 100%), the correspondence of the
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parameter mean value and standard deviation to its best value and
uncertainties is invalid and may be treated merely as abstract
parameters of the distribution function [9]. In these cases, para-
meters should be given in the form of median value and con-
fidence intervals rather than mean value and standard deviation
[9]. These cases will be avoided in further discussion, which is
focused on data interpretation and sampling rather than their
representation.

In this paper, the use of the methods is described on cases with
sampling of resonance parameters for nuclear data applications,
even though the methods are general and can be applied to any
correlated parameters with uncertainties. The sampling methods
have been tested and compared on two different >>Mn resolved
resonance parameters evaluations: either ORNL! with small rela-
tive uncertainties and strong correlations, or NRG (TENDL-2010
nuclear data library) [10] with large uncertainties but sparse
correlation matrix.

The results of the numerical comparison of the sampling
methods' performances on the chosen >°Mn evaluations are
presented in Section 3.

2. Overview of the Monte Carlo sampling methods

A sampling method, that is efficient, stable, and, most impor-
tantly, consistent in a wide range of conditions, is sought. In this
discussion, three different methods with several variations are
proposed:

1. Diagonalization method: The method is a linear approximation
and is based on diagonalization of the covariance matrix and
individual sampling of uncorrelated linear combinations of
correlated parameters in diagonal space. A more detailed
description of the method is given in Appendix A.

2. Metropolis method: The method is based on generation of a
stochastic Markov chain of states, from which random samples
can be produced. In principle, any distribution may be used for
sampling with Metropolis algorithm.

3. Correlated sampling method: The method can be used for
random sampling of correlated parameters according to the
multivariate normal or log-normal distribution. A more
detailed description of the method is given in Appendix B.

All the methods discussed in this paper are in principle
completely stochastic. Generally speaking, in some cases a combi-
nation of deterministic and probabilistic approach might be more
efficient. A possible way to introduce deterministic elements into a
random sampling method is to divide the domains of the sampled
variables into subdomains with predetermined numbers of ran-
dom samples in each subdomain, such as in the Latin hypercube
sampling method [11]. The Latin hypercube sampling might be
useful for multivariate sampling problems with a only few vari-
ables. Since the total number of subdomains exponentially
increases with dimension of the sampled parameter vector, this
method is extremely impractical when dealing with a large
number of correlated variables like in the studied case. It has been
found out that the use of the Latin hypercube sampling
is beneficial for distributions with extremely high “tails” like
the log-normal distribution with extremely large relative uncer-
tainty, however, with only a very limited number of correlated
variables [12].

In the field of reactor physics, the random sampling methods
are mostly used for the sampling of nuclear data, however, in
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principle their applicability is much more general since they may
be used for any data with given uncertainties. All calculations in
this paper were performed using home-made codes, programmed
in Mathematica,? as a proof-of-principle of the sampling methods
described below. Further implementation in FORTRAN for produc-
tion runs is planned. All methods can be used with same input/
output as the existing nuclear data processing or reactor calcula-
tion codes, e.g. fitted resonances with covariance matrices derived
by SAMMY [13] or REFIT [14] can be used as input and the
sampling aimed at producing representative samples of the
resonances.

2.1. Challenges of large relative uncertainties

When the mean value (x) and the standard deviation oy (which
correspond to the best estimate and uncertainty for parameters
with small relative uncertainty [9]) provide the only available
information about a physical quantity, the normal distribution with
mean value and standard deviation as its parameters

1 (x—(x))

is the best possible assumption for the parameter probability
distribution function (PDF) according to the maximum entropy
principle [15].

Some physical quantities, like the resonance widths, are inher-
ently positive. Therefore, when large relative standard deviations
are present (above ~0.5), a significant fraction of negative samples
of inherently positive parameters is produced if sampled according
to the normal distribution, which is unphysical. Samples with
negative values may be ignored, but this affects the mean and the
standard deviation of the parameter. If the uniform instead of the
normal distribution is used
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this reduces the number of cases with negative parameters but on
the other hand, when the relative standard deviation exceeds
1/4/3=0.58, negative values are not excluded. Furthermore, when
the relative standard deviation exceeds =0.666 (see Fig. 1), the
fraction of negative samples becomes larger than for the normal
distribution. Therefore, the applicability of uniform sampling is
limited to a narrow interval of relative uncertainties. Also, since
the uniform distribution has no tails, sampling may give very
different results in integral calculations if the observable happens
to be highly sensitive to parameter values sampled from the
distribution tails. Finally, the recommendation made in Ref. [16]
should also be noted: the use of the uniform distribution by
evaluators should be discouraged because of the potential complica-
tions involved.

For inherently positive parameters with known mean value and
standard deviation, the log-normal instead of the normal distribu-
tion should in principle be employed [8] since the maximum
entropy principle is applied in the logarithmic rather than the
linear space. The form of the PDF is

1 In x—p)?
px)= \/TJZ—)? exp (—(nszﬂ)> x>0 3
where
o3
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