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a b s t r a c t

When trying to measure an optical surface at utmost absolute precision, the problem of the missing or

unknown ‘‘reference surface’’ is often encountered. It is obvious with Fizeau and Michelson’s

interferometry, where the height difference between the surface under test (SUT) and a reference

surface is measured. It is also true from slope measurements in long trace profilers (LTP), where due to

small construction errors, the response to a perfectly flat ideal surface can be considered as an unknown

reference to be subtracted from the measurement data. As no ‘‘perfect artifact’’ can exist, these

references cannot be directly determined. The addition of the unknown reference can severely bias the

reconstructed surface when field stitching is applied.

The results of ptychography have proved that when a measurement is a function of a unique object

function with a translated but unique response function, the redundancy of a large set of data allows

accurate reconstructions of the object and response function despite the presence of measurement

noise. In the case of LTP and interferometry, the basic problem is linear and can be solved by linear

algebra rather than iteratively. The method has been already applied to SOLEIL and ESRF LTPs and is

succesfully used on a regular base. We show here that the method can be also applied to interferometry

and improve stitching results.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Quality of an optical surface is evaluated from the departure of
the surface from an ideal optimal shape. Progress of optical
surface polishing techniques is such that local correction of less
than 1 nm in height can be reliably applied. However asserting a
shape error with an accuracy below 1 nm is not an easy task
because shape measurements are never absolute.

Two different kinds of instruments are used for measuring the
shape of optical surfaces, interferometers and slope profilers.
Interferometry is relative by nature, since the measured quantity
is the height difference between the surface under test (SUT) and
a reference surface. Slope profilers are measuring the angular
deviation of a probe beam which is scanned on the SUT along a
line. Different schemes are used, but the angle measuring part is
typically an autocollimator head. At the microradian level, the
linearity of the angle response can no longer be assumed, because
inhomogeneities in the glass of the autocollimator lenses produce
small spurious deviation depending on the position of the
returning beam. Moreover, as the beam return path depends on

the travel distance from the autocollimator to the SUT this
calibration is valid for a defined travel distance.

In order to recover the ‘‘true surface’’, the reference surface, or
the slope calibration curve, need to be determined with the same
accuracy. This determination is difficult because straightforward
methods, such as measuring a perfectly known surface or tilting a
surface with perfectly known angles, is not possible. When using an
interferometer, a classical way to turn around the difficulty is to
average random areas of a good quality surface larger than the field
of view. The solution is a good starting point, but since the statistical
properties of the surface are not known there is a good chance it
introduces bias, especially for the lowest spatial frequencies.

The method that we investigate here is an extension of this
method in the sense that we use repeated overlapped measure-
ments of the same surface at different relative positions of the
reference with respect of the surface or at different tilt angles
along the calibration curve. As a result we obtain a redundant set
of measurements which contains information of both the SUT and
the reference (or SUT slope profile and calibration curve). For
profiler type measurement we already showed in a previous
paper [2] that it was possible to recover both the surface slope
and the calibration curve. More examples on this are given here.
We also show that the application of the same redundancy
principle to interferometric measurements allows recovering
both the SUT shape and the reference.
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2. Solving the reference problem from redundant overlapped
measurements

Let us assume that we have a measuring procedure whose
result, M(xi,j), recorded on a pixelated detector, is the sum of the
true surface signal, S(xi,jþx0), a reference signal R(xi,j) which
depends on the position x. The measurement can be repeated
while changing the (known) offset x0 between the object and the
reference. So doing, datasets Mk(xi,j) are being built where the
point to point coupling between the signal and the reference is
each time different. Neglecting measurement errors, we have

Mk xi,j

� �
¼ S xi,jþxk

� �
þR xi,j

� �
: ð1Þ

Since the two vectors S and R are unique we are getting a
redundant information on them. In more mathematical terms, we
are building a large set of overdefined linear equations which can
be only solved in a least square sense. In other words we can look
for R(xi,j) and S(xi,j) such as the total error E¼

P
k½Mk xi,j

� �
�

S xi,jþxk

� �
�R xi,j

� �
�2 is minimum. It is a maximum likelihood

regression (MLR). The convergence of the minimization of error
E, actually means that the reproducible and consistent informa-
tion on the signal S and reference R can be extracted and
separated from other sources of deviation included in the data.
The residuals, Mk(xi,j)�S(xi,jþxk)�R(xi,j) are the statistical errors
inherent to measurements mixed with other sources of deviation
not included in the model. When one of these deviation sources
can be modeled as depending linearly of a set of extra parameters
Pn such as the tip tilt of the reference with respect to the SUT, they
can be included in general equations and extra parameters Pn are
also determined together with S and R.

In the thought experiment defined above, it is assumed that
the translation steps xk are integer numbers of pixels and each
equation is relating one point of the signal to one point of the
reference. The matrix of the equation system is therefore very
sparse and well conditioned for iteratively solving the least
square problem. It may happen that step sizes xk are not integer
pixel size and that the value of function R or S needs to be
interpolated at the measurement position from the grid of
computation values. In order to preserve the equation matrix
sparseness, the interpolation function should be local and involve
only a minimum number of data values. This is especially
important when the size of the problem is larger.

As in any MLR method, the convergence of the error mini-
mization toward a reasonable solution is not guaranteed and
depends on the validity of the model used. When iterative
computation methods are used, it depends also on the equation
conditioning and on the quality of the starting point approxima-
tion. However it should be reminded that redundancy and MLR
methods are currently used for solving problems of object
recovery from entangled data in much more complicated cases
than the simple addition of two functions. A noteable example is
ptychographic imaging which allows recovering both the object
and probe function from overlapped far field diffraction images of
the probe and object product [1].

3. Application of redundant overlapped measurements to LTP

As said in Section 1, the response of the long trace profiler
(LTP) of SOLEIL presents slight (few microrads) nonlinearities over
its 8 mrad measuring range, and hence, as any instrument of its
kind, it needs to be calibrated. Moreover, since the distance
between the SUT and the slope measuring head can have large
variation, this calibration may substantially differ from one
measurement to another. The overlapped redundant measure-
ment method, allowing to simultaneously obtain the SUT profile

and the linearity error, has been quite systematically used at
SOLEIL since it was developed a few years ago under the name
LEEP (linearity error elimination procedure) [2]. The method is
usually applied as a stitching method for strongly curved surfaces
when the slope range exceeds the 8 mrad measuring range of the
LTP. The surface is placed on the LTP bench and tilted in such a
way that one extremity of the mirror is measured at the center of
the LTP measuring range and a profile measurement is made on
the part of the mirror which can be measured. Then the mirror is
tilted step by step until the other end of the mirror is also
measured at the center of the measuring range. Profiles are
recorded at each step on the measurable part of the surface. Tilts
steps are chosen so that any position x of the SUT is measured
with enough redundancy (20 times whenever possible).

Denoting the linearity correction for the measured slope, s, by
C(s) and the tilts by Tk, the recorded slope data can be described
as

Mk xið Þ ¼ S xið ÞþC Mk xið ÞÞþTkð ð2Þ

where it is assumed that the SUT is short enough for the error
coming from the change of the return path being negligible with
respect to the slope induced correction C(s). For solving the
problem, the linearity correction needs to be evaluated on a grid
of tabulated slope values sp and therefore the correction for a
given measured slope s¼Mk(xi) must be interpolated on this base
in a form such as

C sð Þ ¼
X

BpðsÞCp: ð3Þ

As mentioned before, the interpolation should be local to
preserve the sparseness of the equation matrix. In our implemen-
tation we use a cubic B-spline interpolation for which the at most
5 coefficients Bp are non zero for any s. With this interpolation,
the system of Eq. (2) can be rewritten as a set of linear equations
of the unknown vectors S(x), C, and T, and, since this system is
overdefined, it can be solved in a least squared sense as stated
before. The LTP correction problem is one-dimensional and there-
fore remains small enough to be solved on a personal computer.

At Soleil, the method is applied to all surfaces for which
stitching is required and when the utmost accuracy is needed.
It was also successfully applied to ESRF LTP measurements [3].
The spherical test mirror (R¼9.3113 m) the shape error of which
is given in Fig. 1 is a typical example. This strongly curved mirror
has been circulating between synchrotron laboratories for mutual
comparison of their measuring instruments. Fig. 1 is plotted with
the height errors of this mirror as measured by the Hemoltz
Zentrum Berlin (HZB)/Bessy II NOM [5], by ESRF LTP without
application of the LEEP method and by SOLEIL LTP with applica-
tion of the LEEP method. The agreement between SOLEIL LTP and
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Fig. 1. Height errors of a 9.3 m spherical reference mirror resulting from

measurements made at HZB-Bessy, ESRF and SOLEIL. Linearity errors of HZB

NOM are compensated by precise calibration at PTB, those of SOLEIL LTP are

corrected by application of the LEEP method, while ESRF data are uncorrected.

(Courtesy Franck Siewert and Amparo Vivo.)
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