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a b s t r a c t

We discuss the systematic errors in emittance measurements with quadrupole scans and four screens

due to large momentum spread in the beam. This is particularly relevant in the drive beam complex of

CLIC and the test beam line TBL in the CTF3 facility at CERN. We also discuss methods to adapt the

model to correct for the systematic errors.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The proposed future compact linear collider CLIC [1] will be
based on a two-beam acceleration scheme, where a high intensity
beam with the moderate energy of 2.4 GeV will be used to
generate microwaves that are subsequently used to accelerate a
second beam to energies in excess of 1 TeV. The beam that
provides the energy is commonly called the drive beam and it is
decelerated by up to 90% in so-called power extraction and
transfer structures (PETS). This deceleration process induces a
large energy spread in the drive beam and also increases the
emittance. It is therefore vital to consider diagnostic methods that
permit the accurate characterization of these quantities. The
increase in energy spread was already addressed in Ref. [2] and
in this report we address emittance measurements and how it is
affected by the large momentum spread. In quadrupole scans in
particular the strength of the quadrupole is varied and thereby
also the chromatic effects are different at different quadrupole
settings, leading to an effect of the momentum spread on the
measured spot size. If uncorrected, this will lead to a misinter-
pretation of the emittance. In Ref. [3] this effect was addressed in
a perturbative way, which is adequate in the case of a Gaussian
momentum distribution with an rms spread of a few percent, but
in the CLIC drive beam decelerator and even in the currently
operated test beam line (TBL) in the CLIC test facility CTF3 at
CERN, the momentum spread can easily exceed tens of percent
and the profile is vastly different from Gaussian, which warrants a
careful analysis, of both the non-perturbative regime as well as
non-Gaussian beams. However, chromatic effects play a role not

only in quadrupole scans but also emittance measurements
where three or four screens placed in a FODO beam line are
susceptible to the same misinterpretation and we will consider
that setup as well.

In the remainder of this report, we therefore first introduce the
emittance measurement setup with two adjacent quadrupoles
that permit to have a beam waist on a beam screen and vary the
beam size around it both in the horizontal and the vertical plane.
In the analysis, we will introduce the energy as an extra
parameter and will find the chromatic effects easily parameter-
ized by a small number of integrals over the momentum dis-
tribution of the beam. We then analyze the system by assuming a
Gaussian momentum distribution and then consider a typical
energy distribution in TBL at CERN. We progress to show how the
chromatic effects can be compensated provided that the momen-
tum spread is known. We then perform the same type of analysis
for an emittance measurement setup where four screens are
placed in a FODO beam line and conclude the report with a
discussion.

2. Two-quadrupole model

We consider a thin-lens model of the quadrupole scan emit-
tance measurement setup. This is appropriate as long as the
lengths of the quadrupoles is small compared to the beta func-
tions, which normally is the case. Despite the high beam intensity,
we neglect the defocusing effect of space charge because the
emittance is large. Using the Kapchinskij–Vladimirskij model as
presented in Ref. [4], we have estimated it to be two orders of
magnitude weaker than the typical focusing in the quadrupoles
and we therefore neglect it. The simplified beam line consists of a
quadrupole with nominal focal length f1, a drift space of length
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l1, another quadrupole with focal length f2 followed by a drift of
length l2 and the beam screen. The emittance measurement is
based on the determination of the beam matrix s immediately
upstream of the first quadrupole by observing the beam size on
the screen while varying the quadrupoles. We assume that we
know the initial sigma matrix, predict the measured beam size
and then invert the in general over-determined linear system in
the least-squares sense. For this analysis, we thus need the
transfer matrix R from the first quadrupole to the beam screen

R¼
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For computational ease, we have used the same sign for both
quadrupoles, but in the final equations it is of course trivial to flip
the sign of the defocusing quadrupole. Note also that we consider
one plane, horizontal or vertical, at a time. Observe that the
elements of the transfer matrix R are functions quadratic in the
focal strengths 1=f i. Once we know the transfer matrix as a
function of the focal strengths, we can calculate the beam size
on the screen S from

S2
¼ R2

11s11þ2R11R12s12þR2
12s22 ð2Þ

where sij are the matrix elements of the sigma matrix upstream
of the first quadrupole. We observe that the right hand side of Eq.
(2) now contains up to the fourth power of the inverse focal
lengths.

Now is the time to introduce the chromatic effects by noting
that the focal length is inversely proportional to the quadrupole
gradient and proportional to the beam energy, hence, it has the
momentum dependence

f ðdÞ ¼ ð1þdÞf ð3Þ

where we chose to parameterize the momentum by d¼Dp=p, the
relative difference to the nominal momentum p and f the focal
length corresponding to that same momentum.

In order to find the momentum spread dependence of the
measured beam size on the screen S, we insert the transfer
matrix elements from Eq. (1) into the equation for the beam size
Eq. (2), augment each focal length by a factor 1þd and sort the
resulting equation into powers of 1=ð1þdÞ. The algebra is some-
what lengthy though simple. We therefore only show one term as
an example
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and similar expressions for R2
11 and R11R12 that enter in Eq. (2) are

given in Appendix A.
If we have a beam with a momentum distribution cðdÞ, we can

calculate the rms beam size on the screen S by averaging over the
momentum distribution cðdÞ. A justification of this is given in
Appendix B. We observe that the entire momentum dependence
of the beam size is encoded in integrals of the type

In ¼

Z 1 cðdÞ
ð1þdÞn

dd ð5Þ

where the lower integral boundary has to be chosen to avoid the
pole at d¼�1 which corresponds to a case where particles have
lost all momentum and will not propagate to the screen anyway.
Note that we also assume without loss of generality that the
momentum distribution cðdÞ is normalized to unity.

3. Gaussian momentum spread

We start by considering the following normalized Gaussian
momentum distribution which is characterized by its width D

cðdÞ ¼
1ffiffiffiffiffiffi

2p
p

D
e�d

2=2D2

ð6Þ

As a first step we calculate the integrals for small momentum
spread D51 which is trivial by noting that the expansion of
1=ð1þdÞn has the following form [5]:
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Averaging over the momentum distribution cðdÞ requires to
evaluate the following integrals:

InðDÞ ¼
1ffiffiffiffiffiffi
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which, using the expansion discussed above, summarizes to
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provided that the momentum spread D is small such that we can
extend the integral boundaries to minus infinity without having
to worry about the pole at d¼�1. The general form is derived in
Appendix C.

Using these auxiliary functions, we can calculate how the
quadrupole scan data are affected by large momentum spread. As
parameters we use the following start values that correspond to
typical values in TBL at CERN.

Quantity Value Units

Energy 150 MeV
en 200 mm mrad

b 8 m

a �1
f1 0.73,y,1.46 m
f2 �1.46 m

l1,l2 0.5, 1.33 m

In Fig. 1 we show the beam size on the screen squared as a
function of the strength of the first quadrupole, which is varied,
while the second quadrupole is kept fixed at f 2 ¼�1:46 m. The
three curves are calculated with momentum spread D to be equal
to 0, 0.1, and 0.2, respectively. We observe significant variations
of the measured beam size for non-zero momentum spread. These
differences are more pronounced for larger quadrupole excitation,
which is consistent with the fact that chromatic effects are more
significant for stronger quadrupole excitations. We also observe
that larger momentum spread D increases the measured beam
size for a given quadrupole excitation.

4. Determining the emittance

The beam sizes S measured as a function of the quadrupole
excitation which is shown in Fig. 1 is post-processed to determine
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