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a b s t r a c t

The unfolding program TRUEE is a software package for the numerical solution of inverse problems. The

algorithm was first applied in the FORTRAN 77 program RUN . RUN is an event-based unfolding

algorithm which makes use of the Tikhonov regularization. It has been tested and compared to different

unfolding applications and stood out with notably stable results and reliable error estimation. TRUEE is

a conversion ofRUN to Cþþ, which works within the powerful ROOT framework. The program has been

extended for more user-friendliness and delivers unfolding results which are identical to RUN . Beside

the simplicity of the installation of the software and the generation of graphics, there are new functions,

which facilitate the choice of unfolding parameters and observables for the user.

In this paper, we introduce the new unfolding program and present its performance by applying it

to two exemplary data sets from astroparticle physics, taken with the MAGIC telescopes and the

IceCube neutrino detector, respectively.

& 2012 Elsevier B.V. All rights reserved.

0. Introduction

Solving inverse problems can be described as a method to find
the cause of known consequences. Problems of this kind manifest
themselves in a wide range of research fields such as natural
sciences, economics and engineering. Looking at physics as an
exemplary field, inverse problems are among the fundamental
challenges in various areas, for instance particle physics, crystal-
lography or medicine. The particular problems and solutions in
this paper will be presented and described alongside the subject
of astroparticle physics. The nomenclature used here is mainly
following Ref. [1].

The structure of this paper comprises three main sections.
First, the class of inverse problems and the general procedure of
unfolding with regularization are outlined. In a second section,
the new unfolding program TRUEE is introduced. Subsequently,
the first applications of the program in astroparticle physics,
namely in the data analysis of the experiments MAGIC and
IceCube, are presented in the third section. We conclude with a

summary of the obtained results and an outlook on further
extensions and applications of the program.

1. Inverse problems and unfolding

In general, the distribution f(x) of a variable x has to be
determined. However, it is often not possible to measure the
value x directly. Instead, the detector records x-correlated vari-
ables y. These signals can be seen as the mentioned consequences
of the causation x. The goal is to get the best-possible estimate of
the f(x)-distribution from the measured g(y)-distribution. As the
measurement in a real experiment is distorted, this is not trivial.
A direct allocation of a value x to a value y is not possible, because
one x value causes different signals with different y values with
certain probabilities. Furthermore, the probability to record a
signal at all is usually less than one and depending on x, which
causes a loss of events. Thus, the transformation of x to y is
disturbed by a finite resolution and a limited acceptance of a real
detector.

In mathematics, this problem can be described by the Fred-
holm integral equation [2]

gðyÞ ¼

Z d

c
Aðy,xÞf ðxÞ dxþbðyÞ ð1Þ

where g(y) is the distribution of the measured observable y and
can in general be multidimensional. The function Aðy,xÞ is called
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the kernel or response function and includes all effects which
occur in a real measurement process. In most cases, this function
is not known exactly and has to be determined by Monte Carlo
(MC) simulations, where the measured and the real distributions
are known. The parameters c and d are the integration limits of
the range where x is defined ðcrxrdÞ. The function b(y) is the
distribution of a possible background, which is assumed to
be known.

In reality the measurement delivers discrete values. Further-
more the handling by the algorithm requires a numerical descrip-
tion of the distributions. Thus, a discretization of all functions
is required. The distribution f(x) can be parametrized with the
Basis-spline (B-spline) functions pj(x) [3] and the corresponding
coefficients aj

f ðxÞ ¼
Xm

j ¼ 1

ajpjðxÞ: ð2Þ

The B-spline functions consist of several polynomials of a low
degree. In the following cubic B-splines are used. They consist of
four polynomials of the third degree each. The points where
adjacent polynomials overlap are called knots. At the knot
positions a B-spline is continuously differentiable up to the
second derivative, which is important because the second deri-
vative is used for the implemented regularization (see Eq. (8)).
For equidistant knots, the cubic B-splines are bell-shaped.
Because of the low degree of the polynomials, an interpolation
with B-spline functions does not tend to oscillate. Using this
parametrization, the B-spline functions can be included in the
response function during the discretization:Z d

c
Aðy,xÞf ðxÞ dx¼

Xm

j ¼ 1

aj

Z d

c
Aðy,xÞpjðxÞ dx

" #

¼
Xm
j ¼ 1

ajAjðyÞ: ð3Þ

By integrating over the y-intervals, the kernel function becomes a
response matrix

Aij ¼

Z yi

yi�1

AjðyÞ dy: ð4Þ

The same integration can be carried out for the measured
distribution g(y) and the background distribution b(y)

gi ¼

Z yi

yi�1

gðyÞ dy ð5Þ

bi ¼

Z yi

yi�1

bðyÞ dy: ð6Þ

Consequentially, the Fredholm integral equation becomes the
matrix equation

g¼ Aaþb ð7Þ

with g, a and b as vectors and A as the response matrix. To
determine the sought distribution f(x), the coefficients aj need to
be found.

Solving Eq. (7) is called unfolding and is generally not trivial.
Due to the finite resolution a smoothing effect on the measured
distribution g is introduced. After the rearrangement of the
matrix equation this smoothing effect is inverted and results in
implausible oscillations of the sought distribution f(x). The most
straightforward approach for the solution is the inversion of the
response matrix A, if A is quadratic and non-singular. The
resulting inverse matrix A�1 contains negative non-diagonal
elements and very large diagonal elements. This causes the
mentioned oscillation, which appear in any approach of solving
Eq. (7) if no additional corrections are applied. This is known as a

so-called ill-posed problem and generally occurs in all measure-
ment processes.

To suppress the oscillations in the unfolded distribution, so-
called regularization methods are applied. In the presented
realization the Tikhonov regularization [4] is implemented. The
method, in its generalized form, requires the linear combination
of the unfolding term with a regularization term (sometimes
called penalty term), which contains a regularization factor. The
regularization term contains an operator, which implies some a
priori assumptions about the solution, such as smoothness. In the
current case the smoothness of the solution is controlled by the
curvature operator C. A large curvature corresponds to large
oscillations. Thus, reduction of curvature implies reduction of
oscillations and that smoothes the resulting distribution. Since
the parametrization of f(x) is based on cubic B-spline functions,
the curvature rðaÞ takes the simple form of a matrix equation

rðaÞ ¼
Z

d2f ðxÞ

dx2

 !2

dx¼ aT Ca ð8Þ

with C as a known, symmetric, positive-semidefinite curvature
matrix.

The actual unfolding is performed as follows. At first the
response matrix A is calculated, based on the MC sample. To
determine the coefficients a of the final result, the unfolding
equation (Eq. (7)) is set up, where g is the real measured
observable distribution. To fit the right hand side to the left hand
side of this equation, a maximum likelihood fit is performed. For
simplicity, a negative log-likelihood function

SðaÞ ¼
X

i

ðgiðaÞ�gi,m ln giðaÞÞ ð9Þ

is formed and minimized. Here gi,m is the number of measured
events in an interval i including the possible background con-
tribution in this region. This number follows the Poisson distribu-
tion with mean value gi. A Taylor expansion of the negative
log-likelihood function can be written as

SðaÞ ¼ Sð ~aÞþða� ~aÞT hþ1
2ða� ~aÞ

T Hða� ~aÞþ � � � ð10Þ

with gradient h, Hessian matrix H and ~a as a first estimation of
coefficients, which have to be found.

After considering regularization (Eq. (8)), the final fit function

RðaÞ ¼ Sð ~aÞþða� ~aÞT hþ1
2 ða� ~aÞ

T Hða� ~aÞþ1
2taT Ca ð11Þ

has to be minimized to obtain the unfolded result. The regular-
ization parameter t controls the effect of the regularization. The
challenge is to find a proper value for t, to get an optimal
estimation of the result as a balance between oscillations and
the smoothing effect of the regularization.

One method to define a value for t is to set up the relation
between t and the effective number of degrees of freedom ndf

ndf ¼
Xm

j ¼ 1

1

1þtSjj
: ð12Þ

Here Sjj are the eigenvalues of the diagonalized curvature matrix
C, arranged in increasing order. The summands in Eq. (12) can be
considered as filter factors for the coefficients. These coefficients
represent the transformed measurement and are arranged in
decreasing order. The filter factors with values o1 diminish the
influence of insignificant coefficients. Accordingly an increasing
value of t cuts away smoothly the high order coefficients and
reduces the number of degrees of freedom. In turn, the definition
of number of degrees of freedom allows the specification of the
number of filter factors and thus of the regularization strength.

To obtain Eq. (12), the Hesse and curvature matrices in Eq. (11)
have to be diagonalized simultaneously. To do this, a common

N. Milke et al. / Nuclear Instruments and Methods in Physics Research A 697 (2013) 133–147134



Download English Version:

https://daneshyari.com/en/article/1823375

Download Persian Version:

https://daneshyari.com/article/1823375

Daneshyari.com

https://daneshyari.com/en/article/1823375
https://daneshyari.com/article/1823375
https://daneshyari.com

