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a b s t r a c t

A novel implementation of a convex hull minimization algorithm for the determination of the

continuum in x-ray and g-ray spectroscopic data is presented in this paper. The method is semi-

automatic, performed in three successive steps and requires user intervention regarding the values of

two parameters. The first controls the low pass filtering and the second the reduction of the estimated

points which construct the background. On the other hand, it does not rely on an explicit mathematical

model of the background or the signal (FWHM, lineshapes) and keeps the original spectrum data

unaltered.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

A typical, albeit critical, procedure in spectroscopic data
analysis is the background elimination of the experimental signal.
Continuum removal is usually the initial preprocessing step in
quantitative spectrum analysis and significantly affects all sub-
sequent study. Theoretically, spectra are composed of peaks
superimposed upon a slow varying background originating from
counts fluctuations in the receiving channel. Due to a number of
effects however, from counting statistics to other specific physical
phenomena, this condition is not met and background shape is far
from linear.

Numerous effective methods have been proposed for x-ray and
g-ray spectrometry. These include: peak stripping [1] where a
comparison is made between the intensity of neighboring chan-
nels, the Statistics Sensitive Nonlinear Iterative Peak-Clipping
Algorithm (SNIP) [2–4], being an improvement of the previous
method and very effective in the complete removal of background
in the vicinity of the peaks, second and third order spline
interpolation [5] via estimation of the local minima on either
side of the peaks, Fourier transform filtering [6], zero-area digital
filtering [7,8] where baseline has the value of zero in the absence
of peaks and its shape is varied between upper and lower
boundaries similar to a smoothed second derivative spectrum,
polynomial fitting [9] or its optimized extension of orthogonal
polynomial decomposition [10] where polynomial fitting is

performed and the weights of the least-squares fit are iteratively
adjusted to include only channels belonging to the continuum,
iterative methods [11], where in each iterative step the peak
height is decreased while one point in each side of the smoothed
spectrum is added until the slope variance reaches a certain value,
Bayesian probability algorithms [12], spectra statistical properties
(counts fluctuations) [13] and continuum estimation based on
mathematical morphology [14] which is actually a filtering
technique based on dilation and erosion of geometric structures
(i.e. the signal). The vast implementation methods for background
determination are a proof that there is not an optimum one.
Parameters like signal-to-noise ratio (S/N), peak lineshape asym-
metry and full width at half maximum (FWHM), inherent char-
acteristics like Compton edges for gamma rays, experimental
setup etc. may significantly affect the background estimation.

In this study, we present a generic geometric approach the for
background removal of energy dispersive x-ray fluorescence and
g-ray spectroscopic data based on Fourier filtering and the
application of topological concepts and algorithms.

2. Method

The method proposed in this study consists of three steps. The
first one, is a common but very basic assumption in all filtering
methods stating that the whole signal, S, is a composition of a low
frequency component (B(E), background) which propagates very
slowly and independently the true information (P(E), peaks).
The latter represent the high frequency component, so that
S(E)¼P(E)þB(E). Fourier transformation is, by definition, a
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technique to determine the frequency content of a time-depen-
dent signal. Using the Discrete Fourier Transform (DFT) we may
sample the signal to a finite number of equidistant data points so
that time is denoted by energy channels (E). The DFT of S(E) can
be written as

FðoÞ ¼
XN�1

E ¼ 0

SðEÞe�ioE ¼ PðoÞþBðoÞ ð1Þ

where o is the frequency component per channel and N the
number of channels.

This low-pass filter attenuates high frequencies and retains
low frequencies practically unchanged. The application of the
inverse Fourier transform gives a first approximation of the
background component as the convolution of the original signal:

S0ðEÞ ¼
1

N

XN�1

o ¼ 0

FðoÞeioE ð2Þ

where S0(E) is a smoothed form of the original spectrum due to
the application of a cutoff frequency (oc) value defined by the
user. The oc value increases as the spectrum becomes more
complicated since the S0(E) has to capture the high degree of
peaks variation. Conversely, its value is low for spectra with well-
defined peaks. For noisy data the optimal value for oc is dictated
by the S/N ratio since by definition it has to suppress high
frequencies and smooth the lower ones.

The second step is to decompose the signal into convex sets
[15]. The theory underlying this process has already been
described by Brunetti et al. [16] who named this approach
‘‘projection on convex sets’’. The method we propose is in essence
analogous but has different implementation and requires no
fitting iterations; it is purely geometrical and driven solely by
the topological descriptors of each spectrum. This step starts by
constructing a one-dimensional table consisting of ‘‘0’’ and ‘‘1’’
which refer to the positive and negative slope of the filtered
signal. Hence, via a pattern search of ‘‘01’’ and ‘‘10’’, we divide the
whole spectrum into regions of peaks and valleys to which we
apply a convex hull minimization routine. Convex hull is a
classical geometrical problem of finding the minimal convex
polygon which contains all points of a set. In other words, given
a finite set of points P¼ {p1, p2,y, pn} as a list of ordered pairs of
cartesian coordinates {(x1, y1),(x2, y2),y,(xn, yn)}, (channel vs.
counts), convex hull of P is the smallest convex set C such that
PAC. It can be applied to any set of positive points propagating
monotonically such as spectroscopic data and is typically given by
the expression:

C ¼
XN

n ¼ 1

lnpn : lnZ0 and
XN

n ¼ 1

ln ¼ 1

( )
ð3Þ

For the calculated convex regions we construct a linear median
of the local data dispersion which splits the polygon into two
parts also by taking into account the varied local slope. Since we
have already divided the spectrum into convex sets of peaks and
valleys, the median effectively allocates the data to background
and peaks. The problem with this algorithmic implementation
though, is to ensure continuation of the background between the
adjacent convex regions. The third step introduces a user adjusted
variable multiplied by the mean derivative of all data points (the
median of all the slopes) of the signal and defines the number of
the linking points which must be included in the estimated
background. This is actually a reduction of points participating
in the final baseline array based on the initial assumption that the
background has quite low mean derivative compared to the high
frequency part of the signal. The final determination of the

continuum is summarized as follows:

S0ðEÞ ¼ PACs and Po j
��

ð4Þ

where Cs is the part of the resulting convex set corresponding to
background and j the slope average of the signal. An outcome
resulting in a smoother spline may be possible with ‘‘overlap and
add’’ algorithms [17] and represents a future development.

3. Results

To assess the efficiency of the method we have evaluated three
different synthesized spectra with diverse background shapes.
First, we have used a set of four Lorentzian peaks of unit height
but of gradually diminishing half-widths to illustrate distortion
effects. To make data more realistic, Gaussian noise (sn¼0.04) has
been added. Fig. 1(a)–(c) depicts the three steps required for the
determination of the background.

The two adjustable parameters play a significant role for the
correct background approximation. If the oc has a very high value
the number of convex regions increases and part of the peaks are
considered as background. Similarly, when j adopts very high
values, Eq. (4) indicates that steep signals ‘‘contaminate’’ the
points considered as background. The comparison of Fig. 1(b) and
(c) clearly shows the importance of j, especially in noisy spectra.

Fig. 2 shows an energy-dispersive X-ray fluorescence (EDXRF)
spectrum with a 238Pu excitation source and a Si-PIN detector
adopted from Ref. [6] and the background calculated from it. The
spectrum is far more complicated and therefore the two adjus-
table parameters have higher values compared to the previous
case. Strong peaks are easily distinguished and information from
weak peaks is efficiently retained.

A synthesized g-ray spectrum as described in Ref. [11] is
depicted in Fig. 3. Three Gaussian lineshapes represent the
spectroscopic data with superimposed random noise and Comp-
ton continuum. As expected, the peak width measured in chan-
nels of peaks in the previous case of x-ray spectrum is bigger than
in g-ray one and the latter exhibits some significant asymmetric
background features due to distinct Compton edges. Thus, the two
user defined variables must have even higher values than before
in order to follow the challenging Compton scattering.

It is evident from all figures that the method proposed here
successfully predicts the background signal from diverse spectro-
scopic data related to x-ray and g-ray. It does not require any
previous knowledge about specific experimental details or inher-
ent parameters like asymmetric lineshapes and FWHMs. In
addition, knowledge of the underlying mathematical model is
not necessary. A disadvantage however, might be the reproduci-
bility of the estimation among users since it requires the fine-
tuning of two adjustable parameters making the whole process
semi-automatic.

4. Conclusions

A novel implementation of an accurate and fast technique
aiming to determine the continuum independent of manifesta-
tions of physical phenomena is presented in this study. The
method requires distinct steps based on Fourier filtering and
convex hull minimization. It is computationally inexpensive and
it does not require fitting convergence or successive iterations.
Results showed comparable results with other background elim-
ination methods found in the literature. The accuracy is con-
firmed by synthetic and experimental spectra. A significant
advantage is that it does not rely on an explicit mathematical
model of the continuum since, quite often, background modeling
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