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a b s t r a c t

In this paper we will investigate the effect of two-stream instability on saturation mechanism in

Two-Stream Free Electron Laser (TSFEL) with a helical wiggler pump. A two-velocity relativistic

electron beam propagates through the helical wiggler field. The relativistic electron stream is assumed

to be cold. The slippage of the electromagnetic wave with respect to the electron beam is ignored. Self-

consistent evolution of an electromagnetic wave in the presence of two-velocity electron beam is

described by a set of coupled nonlinear differential equations in 1D approximation. Slowly varying

envelope approximation is used and by the Runge–Kutta method algorithm is solved numerically. The

power versus the axial distance has been plotted. It has been found that the TSFEL reaches the

saturation regime in a shorter axial distance in comparison with the conventional FEL.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Using two electron beams rather than one in a free-electron laser
has some advantages. For example, when a two-stream instability
occurs, it causes an increase in gain as well as the growth rate [1–5].
Two-stream FEL gives the coherence laser radiation and therefore, the
problem of longitudinal coherency that occurs in the (Self Amplified
Spontaneous Emission) SASE FEL does not occur in this model [6].
Employing of two stream-instability as a basic mechanism in FEL is
proposed first by Bekefi and Jakobs [1]. So far, TSFEL with different
wiggler pumps with and without axial guide magnetic field have
been considered frequently in literatures [7–13]. In addition to an
advanced accelerator same as the Multi-Channel Linear Induction
Accelerator (MLINAC) or a two-beam accelerator instead of a con-
ventional LINAC, this model of FEL require a merging system
(constructed on the basis of magnetic turning systems) [14,16–18].
The merging system formed the two-velocity electron beam. The
design of an accelerator’s beam source and injector plays a major role
in determining a maximum current and brightness. In the MLINAC
two electron beams accelerated simultaneously in two different
channels. Design elements of the MLINAC and two-beam accelerators
are given in [19–21]. Nonlinear theory of two-beam FEL with a
tapered wiggler pump and a 3-D simulation of prebunched two-beam
FEL with a planar wiggler pump have been studied in Refs. [6,7]. In
the present paper we investigate the effect of the two-stream
instability on the saturation mechanism of TSFEL with a helical
wiggler pump. Energy difference of two beams in TSFEL is an

important factor. Generally, in Two-Beam FELs with planar magnetic
pump the lower (higher) energy electron beam has a resonant
electron energy of g1(gn). The nth harmonic wave number satisfied
the resonance condition so it can be easily shown that gn ¼

ffiffiffi
n
p

g1

[6,11]. Since we use a helical wiggler pump in our model and there is
no possible harmonic generation, so, we choose the optimum
difference of the beams energy accordance of the linear growth rate
of TSFEL, which, have been obtained in Refs. [22,23]. Wave growth,
and thus, electron bunching occurs because of the coupling between
the negative energy wave in one stream, and the positive energy
wave in the other stream.

A simplified schematic of a typical TSFEL in the amplifier mode
configuration is shown in Fig. 1. The set of parameters in Fig. 1 is a
common one for numerical analyses, for instance, a helical
wiggler of Bw¼2 kG maximum magnetic field, lw¼2 cm length
of the wiggler period, rb ¼ 0:1 mm beam radius, electron beam
with a total current of I¼0.67 A, E¼0.153 MeV energy and
DE¼ 0:025 MeV difference energy of the beams.

The paper is organized as follows: the theoretical model with
the electron orbit and the field equations is introduced in Section
2, while the numerical solution of the coupled particle and field
differential equations is given in the Section 3. Summary and
conclusion are reported in the Section 4.

2. Fundamental equations

2.1. The physical configuration

A two-velocity transversely homogeneous non-neutralized rela-
tivistic electron beam with different velocity v1 and v2 propagate
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along the positive z direction trough the magnetic wiggler field, the
wiggler field is given by

B
!
ðzÞ ¼ Bw½êx cosðkwzÞþ êy sinðkwzÞ�: ð1Þ

where kw(¼2p/lw) is the wiggler wave number, êx, êy are the unit
vectors of a Cartesian coordinate system.

The fluctuating electromagnetic and electrostatic fields are
treated using the time-varying vector and scalar potentials in
the Coulomb gauge, and we assume that these fields are of the
form [14]:

d A
!

iðz,tÞ ¼ dÂðzÞ½êx cosaþ iðz,tÞ�êy sinaþ iðz,tÞ� ð2Þ

d|iðz,tÞ ¼ d|̂ðzÞcosaiðz,tÞ: ð3Þ

here the subscript i¼1,2 refers to the quantities of the different
beams. dÂiðzÞ and d|̂iðzÞ are the time independent amplitude of
the vector and scalar potentials. aþ i(z,t) and ai(z,t) are electro-
magnetic and space charge phases defined as

aþ iðz,tÞ ¼

Z z

0
dźkþ iðźÞ�ot ð4Þ

and

aiðz,tÞ ¼

Z z

0
dźkiðźÞ�ot ð5Þ

where o is the wave frequency, kþ iðźÞ ¼ kiðźÞ�kw and kiðźÞ are the
wavenumbers. This is equivalent to the WKB formulation when it
is implicitly assumed that the amplitudes and wavenumbers vary
slowly over a wavelength [14].

2.2. The electron orbit equation

The electron orbit equations can be obtained by substitution of
the static fields in Lorentz force equation

d p
!

i

dt
¼�e d E

!
þ

v
!

i

c
� ð B
!

wþd B
!
Þ

" #
: ð6Þ

where d E
!

and d B
!

are the fluctuating electromagnetic fields
which are derivable from the vector and scalar potentials
(2 and 3). It is convenient to write equation in rotating frame
with the wiggler field as

ê1 ¼ coskwzêxþsinkwzêy

ê2 ¼�sinkwzêxþcoskwzêy

(
ð7� 1Þ

ê3 ¼ êz: ð7� 2Þ

It has been assumed that the amplitude and phase are slowly
varying functions of position ð9@dÂ=@z9{9kþdÂ9Þ, and this occurs
only in the vicinity of the wave particle resonance at offikþvz.
With this assumption Eq. (6) yields three differential equation for
three components of momentum like variables u

!
i ¼ p
!

i=mc.
Using the new dimensionless variables: b

!
i ¼ v
!

i=c, z¼ zkw, t¼

tckw, o¼o=ckw, k¼ k=kw, these equation can be written as [14]

du1i

dz
¼ u2iþ

dda

dz
cosci ð8� 1Þ

du2i

dz
¼�u1i�

ddai

dz
sinci�ôw ð8� 2Þ

du3i

dz
¼ kþdai

u1i sinciþu2i cosci

u3i

�
1

b3i

ðkdji sincsci�
d

dz
dji coscsciÞþôw

u2i

u3i
: ð8� 3Þ

where ôw ¼ eBw=mkwc2 is the wiggler parameter, and dai ¼

edÂiðzÞ=mc2 and dji ¼ ed|̂iðzÞ=mc2.
Here cð � aþ iðz,tÞþzÞ and ðcsci � aiðz,tÞ are ponderomotive and

space charge phase respectively. They can be written as [15]

dciðzÞ

dz
¼ kþ ðzÞþ1�

o
b3i

ð9� 1Þ

dcsciðzÞ

dz
¼ kðzÞ�

o
b3i

: ð9� 2Þ

In the above differential equations we have changed the
integration parameter from tto z, according to the relation
d=dt¼ b3d=dz.

2.3. The field equations

In the Coulomb gauge the Maxwell’s equations can be written
as [14,15]

@2

@z
2�

@2

@t
2

� �
daðz,tÞ ¼�4pdJ?ðz,tÞ ð10� 1Þ

@2

@z@t
djðz,tÞ ¼ 4pdJzðz,tÞ: ð10� 2Þ

where dJðz,tÞ is the nonlinear total current density, dJ?ðz,tÞ and
ðJzðz,tÞÞ are the component of the nonlinear current density
perpendicular and along the z direction respectively. The current
densities can be written as average over the entry time t0 (defined
as the time at which an electron crosses the z¼ 0 plane)

dJðz,tÞ ¼ �
1

4

X2

i ¼ 1

o2
bi

Z þ1
�1

dt0biðt,t0Þ
d½t�tðz,t0Þ�

bziðt,t0Þ
�� �� : ð11Þ

where o2
bi ¼ 4pnbie

2=mc2, b
!
ðt,t0Þ is the velocity of an electron at

time t which crossed the entry plane at time t0, and

tðz,t0Þ ¼ tþ

Z z

0

dz

bzðz,t0Þ
: ð12Þ

It should be noted that it is implicitly assumed that the
electron beam is monoenergetic.

By the substitution of microscopic fields and source current in
Eqs. (2 and 3) into Maxwell’s Eqs. (10-1 and 10-2) a set of coupled
nonlinear differential equations for the slowly varying amplitudes
and phases is obtained. The nonlinear Eq. (10-1) can be reduced to
three first order differential equations for: da, Gþ , and kþ .

dda

dz
�Gþda, ð13� 1Þ

dGþ
dz
¼ ð�o2

þk
2

þ�G
2
þ Þþ

X2

i ¼ 1

o2
bi

da

u1i cosci�u2i sinci

9u3i9
ð13� 2Þ
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Fig. 1. Schematic diagram of a two-stream free electron laser in amplifier mode, lw ¼ 2 cm, Bw ¼ 2 kG.
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