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a b s t r a c t

We discuss the new problems emerging in charged beam transport for SASE FEL dynamics. The

optimisation of the magnetic transport system for future devices requires new concepts associated with

the slice emittance and the slice phase space distribution. We study the problem of electron beam slice

matching and guiding in transport devices for SASE FEL emission by discussing matching criteria and

how the associated design of the electron transport line may affect the FEL output performances. We

analyse different matching strategies by studying the relevant effect on the FEL output characteristics.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to the problem of electron beam slice
matching and guiding in transport devices for self amplified
spontaneous emission (SASE) free electron laser (FEL) [1]. We will
discuss matching criteria and how the associated design of the
electron transport line may affect the FEL output performances.

The concept of slice emittance is a by-product of the SASE FEL
Physics. It is indeed associated with the fact that, in these devices,
the combination of mechanisms like gain, slippage and finite
coherence length
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(with l and r being the FEL operating wavelength and the Pierce
parameter, respectively) determines a kind of local interaction,
because the radiation experiences only a portion of the beam,
having the dimensions of a coherence length (see Fig. 1). The
interaction is therefore sensitive to the longitudinal and trans-
verse characteristics of this ‘‘slice’’, which will be characterised by
a specific six dimensional phase space distribution.

In Fig. 1(a) we have reported an example of a coherent seed,
having an rms length of the order of the coherence length
undergoing a high gain FEL amplification process, induced by an
electron bunch with an rms length szb lc. In the case of SASE the
laser field grows from the noise and therefore, when coherence
develops, we have the formation of a number of peaks (nffi(sz/lc))
(identified with the Supermodes [2]). The evolution dynamics is
particularly complex and the interplay between these modes

during the growth is responsible for the characteristic spiking
behaviour [3].

Within certain limits, we can consider the evolution of the
field generated by an individual spike as due to the characteristics
of the corresponding electron bunch slice. The growth of each
spike will be therefore determined by various effects associated
with the emittance, transverse section and matching condition,
energy spread of the slice, determining the local interaction.

In Ref. [4] we started a preliminary analysis in this direction
and studied the effect of the evolution of the Twiss parameters on
the laser field evolution, in this paper we will discuss the problem
more thoroughly and start with a more complete mathematical
analysis, employing concepts from the geometry of conics and
therefore we review first some geometrical properties of the
ellipses, useful for the analysis of e-bunches phase space slicing.

We either use method of elementary analytical geometry and
slightly more advanced techniques employing the formalism of
quadratic forms.

We will initially consider the two-dimensional transverse
phase space x,x0 and define in it the Courant Snyder ellipse [2,5],
centred at the origin of the axis (see Fig. 2) and specified by the
following equation:

gx2þ2axx0 þbx02 ¼ e ð2aÞ

where e is the beam emittance and the coefficients g, a, b are the
Twiss parameters, linked by the identity

bg�a2 ¼ 1 ð2bÞ

which ensures the normalisation of the phase space distribution

Fðx,x0Þ ¼
1

2pe exp �
1

2e ðgx2þ2axx0 þbx02Þ
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Furthermore the emittance and the Twiss coefficients [2,5] define
the e-beam rms transverse length, divergence and correlation,
according to the relations:
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where the average is taken on the distribution (3).
The geometrical interpretation of the various quantities, we

have mentioned, is given in Fig. 2.
It is worth noting that the two vertical t and horizontal h

tangents to the ellipse meet the conic at the points:

T1 �
ffiffiffiffiffiffi
be

p
,�a

ffiffiffi
e
b

r� �

T2 � �a
ffiffiffi
e
g

r
,
ffiffiffiffiffi
ge
p

� �
: ð4bÞ

The geometrical meaning of the correlation sx,x0 emerges,
therefore, by an inspection of Fig. 2 and is interpreted as the area
of the rectangle having as dimensions the coordinates of the
tangent points.

The physical role of the a coefficient is that of quantifying the
correlation between positions and momenta of the particles in the
beam and a further geometrical role is played by its sign, specifying
the orientation of the ellipse, which points in the positive direction
of the axis for negative values of a and vice versa when it is positive.
Ellipses with the same Twiss parameters, but with different emit-
tances, will be considered similar.

The angle W (see Fig. 3), formed by the ellipse major axis with the
positive direction of the x-axis, can be determined by performing the
axis rotation (see below for a correct understanding of the physical
dimensions involved in the rotation process)

x¼ X cosðWÞþX0 sinðWÞ
x0 ¼ �X sinðWÞþX0 cosðWÞ ð5Þ

and by requiring that the cross terms in X X0vanish. This procedure,
which is essentially that of reducing the ellipse to the normal form
by imposing that the rotated reference axes coincide with the ellipse
axis, yields:

tgð2WÞ ¼�
2a
g�b , g4b: ð6Þ

The above equation as it stands may not appear correct, the
Twiss coefficients except a are indeed not dimensionless quan-
tities, and we have [b]¼[L] , [g]¼[L�1]. The rotation in Eq. (5),
which mixes a length (x) and dimensionless quantity (x0), is not
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Fig. 1. (a) Local interaction and slice emittance, the dash line is the bunch envelope, the dot line represents the slices and the continuous line is the radiation distribution

associated with the slice, lc being the coherent length; (b) transverse sections of the sliced bunch.

Fig. 2. The Courant Snyder ellipse and the relevant geometrical interpretation.
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