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a b s t r a c t

A well-founded decision needs to take into account as much information from a sample as possible. In

gamma spectrometry, the number of photons and their energy are the two quantities readily accessible

to the physicist and both should be used in order to increase the power of a statistical test. While the

problem of counts of pulses has been much studied the problem of spectral distribution of pulses has

been generally overlooked. This work presents a statistical test combining tests on count rate and tests

on spectral distribution. The proposed method is shown to have an acceptable false positive rate and,

when compared with two other test statistics found in the literature, greater power.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Statistical inference about analyte activity present in a sample
is an important research topic in health physics and part of the
more fundamental question: is there a signal present? To answer
this question, using statistical inference, one either accepts or
rejects the null hypothesis

H0 : No signal present in sample
versus

H1 : Signal present in sample

at an a priori determined significance level, a. The test statistic
used can vary, but ideally the probability of rejecting H0 when it is
in fact true, i.e. a false positive or type I error, should be a [5].

Strom and MacLellan [19] evaluated eight test statistics with
respect to their actual false positive rates, a0. For the lowest count
rates (typically a Poisson mean mbo2), they found that no
method satisfied the predefined significance level, a. It has long
been known that this result is due to the discrete nature of
counting statistics and the effects are especially severe in the low-
level region (see e.g. [2,7,14]). Interestingly, the most well-known
method in the health physics field, given by Currie [9], also

showed the worst result with regard to a0, even for intermediate
count rates, while the method of Stapleton showed good results,
i.e. a0 � a for mb45 [19].

Taking into account the spectral information in a gamma-ray
spectrum (or histogram) should increase the power of the test,
but going from one bin to multiple bins also increases the
complexity of the problem. One method, which calculates the
probability for each possible pulse configuration, given some
background distribution, was presented by Méray [15]. Compared
with the single-bin method of Currie this approach significantly
lowered the detection limit (see Ref. [9] for a definition) [16].

This work presents a new test based on a combination of a
count rate test, viz. a modification of the Sumerling and Darby
(S&D) test [20], and a likelihood ratio test of the spectral
distribution of the counts. The two p-values so obtained are
subjected to Fisher’s method for combining p-values. Both the
false and true positive rates for the proposed method are
evaluated and compared with those of several other methods.

The method described in this work is designed for, and
evaluated in, a mobile gamma spectrometry context. This typi-
cally means conducting repeated short-term measurements, pos-
sibly for an extended period of time, while searching for a
radioactive source. To avoid too many false positive alarms the
chosen a is small (0.1–1%) and the count rates in the simulations
are low to intermediate (5rmbr30). High count rate environ-
ments, where pulses are abundant, can provide many challenges
but generally not with respect to the problem addressed in this
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work. The present work might still be useful in other scientific
fields, despite the chosen context.

2. Theory and methods

Starting with the basic model of radioactive counting, the
Poisson distribution, we show that the spectral distribution of
pulses, given the total count, is described by binomial or multi-
nomial probabilities, depending on the number of channels used.
We then present two hypotheses that split the radioactive
counting problem into two parts: first, the problem of pulse
sums, and secondly, the problem of spectral distribution.

2.1. Single-channel Poisson model

Suppose we have a radioactive counting experiment with two
samples. These samples will henceforth be referred to as back-

ground and sample. Suppose also that the experiment involves
only one channel in which pulses are registered. The probability
of observing k pulses from sample is a Poisson probability

PðX ¼ kÞ ¼
e�mmk

k!
ð1Þ

where m is the true mean. Substituting m by l in Eq. (1) then gives
the probability of observing k pulses from background. By com-
bining the counts from sample, x, and background, y, so that
z¼xþy, the conditional probability of observing a sample-back-
ground pair can be written

PðX ¼ x,Y ¼ y9Z ¼ zÞ ¼
z

x

� �
qxð1�qÞy ð2Þ

where q¼ m=ðmþlÞ. For a derivation, which is straight-forward
using two Poisson distributions, see e.g. [6,19].

An interesting observation is that in high energy physics (HEP)
and gamma-ray astronomy (GRA) the single-channel problem of
Poisson ratios is called signal-bin/sideband and the on/off pro-
blem respectively. It is an old problem that has got much
attention, see e.g. Cousins et al. [6] for a comprehensive review.
The problem is also well known in the health physics/gamma-ray
spectroscopy field, see e.g. [1,9,10,18,19].

2.2. Dual-channel properties

If the pulses from sample and background are split into two
separate channels, c1 and c2, then for each channel the probability
of observing k pulses from background or sample is given by Eq.
(1), substituting m by the appropriate true mean. The joint
probability of observing x1 and x2 pulses from sample in the
two channels is then

PðX1 ¼ x1,X2 ¼ x2Þ ¼ Pðx1ÞPðx2Þ ¼
e�m1mx1

1

x1!

e�m2mx2

2

x2!
ð3Þ

where the first step can be carried out since the random variables
X1,X2 are assumed to be independent. The background pulses are
also Poisson distributed with true means l1,l2 in c1 and c2

respectively. The probability of observing Y1 ¼ y1 and Y2 ¼ y2

counts in background is also given by Eq. (3), substituting mi by li.
The conditional probability of observing a pair of counts from
sample, given the sum of the counts, can be shown to be

PðX1 ¼ x19X1þX2 ¼ xÞ ¼
x

x1

 !
m1

m1þm2

� �x1 m2

m1þm2

� �x�x1

ð4Þ

and analogously for the background

PðY1 ¼ y19Y1þY2 ¼ yÞ ¼
y

y1

 !
l1

l1þl2

� �y1 l2

l1þl2

� �y�y1

ð5Þ

2.3. Multichannel properties

Moving on to k channels and using the notation

x¼ x1þx2þ � � � þxk ð6aÞ

m¼ m1þm2þ � � � þmk ð6bÞ

q1 ¼
m1

m
, q2 ¼

m2

m
, . . . ,qk ¼

mk

m
ð6cÞ

x¼ ðx1,x2, . . . ,xkÞ ð6dÞ

q¼ ðq1,q2, . . . ,qkÞ ð6eÞ

the probability of observing x in channels 1;2, . . . ,k is

PðxÞ ¼
e�mmx

x1!x2! � � � xk!

m1

m

� �x1 m2

m

� �x2

� � �
mk

m

� �xk

¼
e�mmx

x!

x

x1,x2, . . . ,xk

 !
qx1

1 qx2

2 � � � q
xk

k ð7Þ

where

x

x1,x2, . . . ,xk

 !
¼

x!

x1!x2! � � � xk!

is a multinomial coefficient. The conditional probability of obser-
ving x, given a total of x pulses, is then

Pðx9xÞ ¼
PðxÞ

PðxÞ
¼

x

x1,x2, . . . ,xk

 !
qx1

1 qx2

2 � � � q
xk

k ð8Þ

which is a probability in a multinomial distribution, Multkðx;qÞ.
Note that if we are interested only in the ith frequency in Eq. (8) it
is binomially distributed

ðxi9xÞABinðx,qiÞ: ð9Þ

The probability of observing a spectral distribution y within
background can be derived using Eqs. (6) and (7), substituting xi

and mi by yi and li.

2.4. Hypotheses

To test if sample and background are two samples from the
same underlying distribution several tests and hypotheses can be
constructed. In this work we choose to study two different
hypotheses, the first one, HðSÞ0 , concerning the pulse sum and the
second, HðRÞ0 , concerning the spectral distribution within the
samples

HðSÞ0 :
Xk

i ¼ 1

mi ¼
Xk

i ¼ 1

li ð10aÞ

HðRÞ0 : mi=m¼ li=l for i¼ 1 . . . k ð10bÞ

HðSRÞ
0 : mi ¼ li for i¼ 1 . . . k ð10cÞ

where, as easily seen, HðSRÞ
0 is the combination of HðSÞ0 and HðRÞ0 .

2.5. Test statistics for HðSÞ0

2.5.1. Sumerling and Darby’s method

The probability mass function (pmf) of S&D is given in Eq. (2).
Summing over all probabilities from x up to z¼ xþy gives the
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