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a b s t r a c t

Low emittance is a primary goal of electron storage ring based light sources. Optics with low emittance

always require low beta functions in dipoles, which implies that strong quadrupoles are needed and

that natural chromaticity arises. The work presented in this paper demonstrates that by introducing

dipoles with a longitudinal dipolar field-variation, the minimum emittance can be lowered even if the

minimum beta function is constrained.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

High brilliance is sought in electron synchrotron light sources.
The emittance, which is inversely proportional to the brilliance, is
a fundamental parameter in storage rings, and many efforts have
been made to lower the emittance in previous designs. However,
in electron storage rings with constant-field dipoles via the
balance between radiation damping and quantum excitation,
there is an achievable theoretical minimum emittance [1].

For a theoretical minimum emittance (TME) lattice using
uniform field dipoles, there is no constraint on the optics para-
meters at either end of the dipoles. The minimum emittance is

eTME ¼ Cqg2y3
b=12

ffiffiffiffiffiffi
15
p

Jx ð1Þ

This result is achieved when ax ¼ Z0x ¼ 0, bx ¼ Lb=2
ffiffiffiffiffiffi
15
p

and
Zx¼Lbyb/24 are satisfied at the center of the dipole [2].

For a double-bend achromat (DBA) lattice using uniform field
dipoles, zero Zx and Z0x are required at the entrance of the dipole.
In this case, the minimum emittance is

eDBA ¼ Cqg2y3
b=4

ffiffiffiffiffiffi
15
p

Jx ð2Þ

This is achieved when bx ¼ 6Lb=
ffiffiffiffiffiffi
15
p

and ax ¼
ffiffiffiffiffiffi
15
p

hold at the
entrance of the first dipole [2], where Cq ¼ 55_=32

ffiffiffi
3
p

mc¼ 3:84�
10�13 m for electrons, g is the Lorentz factor of the beam energy,
Jx is the horizontal damping partition number and yb is the bend-
ing angle of dipole. Lb is the length of dipole, bx and ax are the

Courant–Snyder parameters and Zx and Z0x are the dispersion and its
derivative, respectively.

To break the theoretical minimum emittance barrier for further
emittance reduction, a non-uniform dipole was introduced by
A. Wrulich in 1992, and was later elaborated analytically by
Nagaoka [3,4] and numerically by Guo and Raubenheimer [5].
Recently, Wang [6] gave new, simple formulas for computing the
minimum emittance. In general, these works focused mainly on
theoretical analysis.

However, in practice, researchers often use portions of uniform
dipoles instead of non-uniform dipoles. In this paper, we consider
a simplified model of a non-uniform dipole that consists of some
adjacent uniform rectangular dipoles and analyze the results of
this model under the condition that the minimum beta function is
constrained in the non-uniform dipole.

2. Basic ideas

To minimize the horizontal natural emittance ex with a non-
uniform dipole made of some adjacent uniform rectangular
dipoles, we shall start with the following formula [7]:

ex ¼ Cq
g2

Jx

H
ðH=r3ÞdsH
ð1=r2Þds

¼ Cq
g2

Jx

I5

I2
ð3Þ

where r is the bending radius at position s, I2 and I5 are the
radiation integrals and H is the so-called H-function given by

H¼ gxZ2
xþ2axZxZ

0
xþbxZ02x ð4Þ

We consider the transfer matrix of a generalized dipole
magnet, neglecting the weak focusing term proportional to the
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square of the curvature in the bending magnet. The transfer
matrix is

Mbend ¼

1 s s2

2r

0 1 s
r

0 0 1

0
BB@

1
CCA ð5Þ

Given initial optics parameters b0, a0, g0, Z0 and Z00 at
the bending magnet entrance, the horizontal optics functions
evolve as

bðsÞ ¼ b0�2a0sþ
1þa2

0

b0

s2 ð6aÞ

aðsÞ ¼ a0�
1þa2

0

b0

s ð6bÞ

gðsÞ ¼ g0 ð6cÞ

ZðsÞ ¼ Z0þZ
0
0sþ

s2

2r ð6dÞ

Z0ðsÞ ¼ Z00þ
s

r ð6eÞ

Our model is a simplified, analytically solvable model of a
non-uniform dipole made of some adjacent, constant-field dipoles.
The optics functions in the nth piece are

bnðsÞ ¼ bn�1,E�2an�1,Esþ
1þa2

n�1,E

bn�1,E

s2 ð7aÞ

anðsÞ ¼ an�1,E�
1þa2

n�1,E

bn�1,E

s ð7bÞ

ZnðsÞ ¼ Zn�1,EþZ
0
n�1,Esþ

s2

2rn

ð7cÞ

and

Z0nðsÞ ¼ Z
0
n�1,Eþ

s

rn

ð7dÞ

where the subscript ‘‘n’’ denotes the nth piece and ‘‘n�1, E’’
denotes the end of the n�1th piece. Therefore, we obtain the
expressions of integral I5 and I2 in Eq. (3) as follows:

I5 ¼
Xn

i ¼ 1

Z Li

0

g0ZiðsÞ
2
þ2aiðsÞZiðsÞZ0iðsÞþbiðsÞZ0iðsÞ

2

r3
i

ds

 !
ð8aÞ

I2 ¼
Xn

i ¼ 1

Li

r2
i

ð8bÞ

In accordance with the standard constant field case, we shall
express the minimum emittance in a familiar form

ðexÞmin ¼MCq
g2

Jx
y3

0 ð9Þ

The factor M for constant field dipole is given by

MTME ¼
1

12
ffiffiffiffiffiffi
15
p

and

MDBA ¼
1

4
ffiffiffiffiffiffi
15
p ð10Þ

The Appendix gives the results of the model in DBA and TME
conditions when the beta function is not constrained. From these
results, we can see that the minimum emittance can reach a very
low value, but the minimum beta function becomes very low at
the same time. In the lattice design, if we desire a small beta,

there will be strong focusing quadrupoles that will increase the
natural chromaticity and decrease the dynamic aperture. In this
paper, we constrained the minimum beta as well as the one in the
uniform dipole case when the minimum emittance was reached.

3. Minimum emittance with minimum beta function
constraint

Keeping the bending angle constant and assuming the same
minimum beta function in dipoles, we calculate the emittance
reduction factor between a non-uniform dipole and a constant
field dipole under the achromat condition and the TME condition,
respectively. In our calculation, there are two non-uniform dipole
models: one consists of constant dipoles with the same length but
different radii, and the other has different lengths and different
radii. We choose, for instance, a non-uniform dipole made of two
uniform dipoles in the DBA condition and three in the TME
condition that have the same length. The same process can be
applied to the calculation of more pieces of uniform dipoles both
with the same length and different lengths.

3.1. Minimum emittance under TME condition

The theoretical minimum emittance for a storage ring is obtained
if both the horizontal beta and dispersion functions have a mini-
mum value in the middle of the bending magnet. We consider a
dipole made of pieces of uniform dipoles, the number of pieces is n

(n is odd). When the storage ring reaches the theoretical minimum
emittance with uniform dipoles, the minimum beta function is only
in the middle of the dipole, bmin ¼ L=2

ffiffiffiffiffiffi
15
p

.
Here, we take a dipole composed of three uniform dipoles for

consideration. Let r1¼r3¼rm, r2¼r and L1¼L2¼L3¼L/3, where
L is the total length of the non-uniform dipole. Choosing the
middle of the second dipole as the point s¼0, here, the Twiss
function b0 ¼ bmin ¼ L=2

ffiffiffiffiffiffi
15
p

, a0¼0, Z¼0. The factor M will be

M¼
L4t1�720Z0L2rt2þ77760Z2

0r2t3

96
ffiffiffiffiffiffi
15
p
ð2þmÞ3ð2þm2Þ

ð11Þ

where t1¼592þm(344þ102mþ15m4), t2¼20þ6mþm4 and
t3 ¼ m2ð2þm3Þ.

The minimum emittance is obtained by imposing the
condition that

@M

@Z0

¼ 0 ð12Þ

We can then obtain the dispersion in the middle of the
non-uniform when reaching the minimum emittance

Z0 ¼
L2
ð20þ6mþm4Þ

216ð2mþm4Þ r
ð13Þ

Substituting into Eq. (11), we can obtain

M=MTME ¼
194þ108mþ54m2þ222m3þ104m4þ42m5þ5m8

3ð2þm3Þð2þm2Þð2þmÞ3
ð14Þ

Fig. 1 shows M/MTME as a function of the parameter m.
The horizontal coordinate is m and the vertical coordinate is
M/MTME. When m-1, the dipole becomes a constant field dipole,
M/MTME-1.

Table 1 gives the results of dipoles made of odd pieces of
constant field dipoles with the same length.

In Table 1, the function ‘‘rn’’ denotes the bending radius of the
‘‘nth’’ piece, and ‘‘Bmax’’ is the maximum field in the dipole
composed of pieces of uniform dipoles. ‘‘B0’’ is the field of
a uniform dipole that has the same length and bending angle as
the non-uniform dipole.

G. Xu, Y.M. Peng / Nuclear Instruments and Methods in Physics Research A 654 (2011) 24–28 25



Download English Version:

https://daneshyari.com/en/article/1824219

Download Persian Version:

https://daneshyari.com/article/1824219

Daneshyari.com

https://daneshyari.com/en/article/1824219
https://daneshyari.com/article/1824219
https://daneshyari.com

