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a b s t r a c t

A new method is proposed which allows the building of a signal basis, i.e. a matrix of traces

corresponding to identified locations of gamma interactions with the crystal, directly from a set of

signals delivered by the detector. The usual on-line algorithms dedicated to the location of the hits can

apply this basis to perform signal decomposition. The method also provides Jacobian transforms that

can be used to compute very quickly the hit locations in situations when signals are not overlapping.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The major methodological advance in the detection of gamma
rays, since the beginning of the century, is the ability to determine the
locations of their interactions within HPGe crystals [1,2]. Knowing the
location of the first interaction allows to define precisely the emission
direction of a gamma ray, so that its energy can be corrected from the
Doppler shift due to the velocity of its source.

The locations of the gamma/crystal interactions are obtained
through the pulse shape analysis (PSA) of the signals [3,4] created
by the drifts of the resulting electrons and holes in the field imposed
to the crystal. A large number of methods and algorithms have been
developed to solve this inverse problem. They consist of comparing
each signal detected during the experiment to a basis of signals
corresponding to identified hit locations. The simple but very fast
grid search algorithm [5] involves the systematic comparison of the
detector signals with all the basis signals. The problem can also be
solved more effectively but more slowly [6,7] using different versions
of non-negative least squares methods [8,9] or Bayesian backtracing
[10]. Signal bases are obtained in two ways: they can be generated
using a signal simulation code or they can be measured using a
crystal scanning system [11,12], i.e. a device including a collimated
gamma source and detectors surrounding the crystal that allow the

identification of scattered gamma rays and thus the localization of
the hit. Scanning systems based on other operating modes have also
been developed [13,14]. Both methods have advantages but also
shortcomings. Indeed, it is extremely difficult to include in a
simulation all the physical characteristics of the crystal and the
distortions induced by the associated electronics [15]. In addition,
each detector has a response function of its own. Regarding scanning
tables, the full characterization of a detector is extremely long
(typically several months). Moreover it is difficult to reproduce the
exact conditions of operation of the detector in its final environment.

In this paper, we introduce a new approach to the problem of
pulse shape analysis which overcomes the need to use a simula-
tion or a scanning system to generate the signal basis. We show
how the location of the hits can be obtained directly from the
shape of the signals delivered by the detector in the experimental
conditions. We present here only the foundations of the method
that can be applied to any kind of segmented HPGe detector. Its
practical application to signals delivered by AGATA will be
presented in a companion paper. AGATA (Advanced GAmma
Tracking Array) [16] is the new generation European gamma-
ray 4 p detector for nuclear spectroscopy. In its final version, it
will be composed of 180 crystals (shown in Fig. 1, upper panel)
forming a sphere.

This method allows doing without simulated signals. However,
in order to validate it, we will use signals generated by two
simulation codes: MGS [17] and AGATAGeFEM [18] in which the
geometry of the AGATA detectors has been implemented.
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2. Method

2.1. Introduction

At first, we will focus on signals induced by isolated hits.
Indeed, when several hits occur simultaneously in a segment or
adjacent segments of the crystal, the resulting signals are added
together. We will come back to the problem of signal decomposi-
tion in the last section.

To locate a hit from the signal shape, we will rely on some
characteristics of the response function of segmented HPGe
crystals:

� The shape of the net signal in the hit segment depends mainly
on the distance of the interaction to the cathode.
� A hit induces signals in the neighboring segments. The closer

the hit, the larger the induced signals.
� Inside a segment, the evolution of the shape of the signal as a

function of the hit location is continuous.

We will also rely on some properties of gamma detection:

� The number of hits decreases exponentially with the depth z of
penetration into the detector.
� The attenuation coefficient m depends only on the energy of

the gamma.

� The distribution of the interactions perpendicular to the z-axis
is homogeneous (if the detector is not placed too close to the
source).

2.2. Jacobian transforms

To determine a precise relation between the characteristics of
the detected signals and the coordinates of the hit, we will use a
Jacobian transform. To illustrate this, we first consider the angular
coordinate f, Fig. 1, perpendicular to the z-axis. Based on the
properties of segmented crystals, this coordinate can be estimated
using the variable j equal to the normalized difference of the
energies of the induced signals in the right and left neighboring
segments:
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where Sl and Sr are the left and the right induced signals and i the
number of the sample. The results of the correlation between the
coordinate and its estimator for all the segments are shown in
Fig. 2(a) for simulated signals. This correlation is not linear and its
shape probably depends on the simulation or the detector. The
distribution of the j variable is shown in Fig. 3 (the values of the
variable are multiplied by 30 so that its range becomes the same
as the range of the f coordinate). Its U shape is due to the
accumulation of values close to 71 as can be seen in Fig. 2(a).

We can now improve the correlation by using the property
that the distribution of hits perpendicularly to z is flat. This means
every value of f has the same probability. To be more precise, we
must also take into account the hexagonal shape of the crystal:
the values of f close to 01 are slightly more probable than those
near 7301 (see Fig. 1, lower panel). Thus, this density function
can be calculated exactly using geometrical considerations only
(Fig. 3). The density distribution of the variable j is quite
different (this could have been inferred from the S shape of the
correlation). It is therefore necessary to modify the estimator j so
that its distribution is equal to that of the coordinate. The
transformation tðjÞ enabling this is obtained from the following
equation [19–21]:
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where the functions f are the density functions. The denominator
of the right hand side is the Jacobian of the transform. This
method applies only if the relation fðjÞ is monotonous, which
is our case within point dispersions. After integration, the above
equation can be rewritten as follows:

tðjÞ ¼ F�1
f ðFjðjÞÞ ð3Þ

where the F are the cumulative distribution functions correspond-
ing to the density functions f: FðxÞ ¼

R x
�1

f ðxÞ dx. This equation is
valid when the relation fðjÞ is increasing. For decreasing rela-
tions, we have tðjÞ ¼ F�1

f ð1�FjðjÞÞ. The new resulting variable
will be used as estimator of f, thus, in the following, we will note
fest ¼ tðjÞ. The variable j will be referred to as a raw estimator. As
can be seen in Fig. 3, the distribution of the fest estimator exactly
matches the distribution of the f coordinate. We underline the
fact that the transform is obtained using only the density function
of the coordinate and the density function of the raw estimator.
The former is deduced from the geometry of the segments and the
latter from the signals delivered by the actual detector. Thus, no
simulation is required in the method. The correlation between the
coordinate and its estimator is shown in Fig. 2(b). The Jacobian
transform has two effects: the range of the estimator is now the

Fig. 1. (Color online). Upper panel: AGATA HPGe crystal. The outer surface is

covered by 36 cathodes (six rings of six portions). A central hole along the z-axis is

covered by the anode. The length of the crystal is 90 mm and its maximum

diameter is 80 mm. Lower panel: typical segment as seen perpendicular to the

z-axis. The dots show the locations of the simulated hits for a 2�2�2 mm grid.
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