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a b s t r a c t

Calculating the expected number of misclassified outcomes is a standard problem of particular interest

for rare-event searches. The Clopper–Pearson method allows calculation of classical confidence

intervals on the amount of misclassification if data are all drawn from the same binomial probability

distribution. However, data is often better described by breaking it up into several bins, each

represented by a different binomial distribution. We describe and provide an algorithm for calculating

a classical confidence interval on the expected total number of misclassified events from several bins,

based on calibration data with the same probability of misclassification on a bin-by-bin basis. Our

method avoids a computationally intensive multidimensional search by introducing a Lagrange

multiplier and performing standard root finding. This method has only quadratic time complexity as

the number of bins, and produces confidence intervals that are only slightly conservative.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world processes can assume one of two possible
outcomes; each independent trial or observation can be classified
as either ‘‘success’’ or ‘‘failure,’’ with the probability of success p.
All such trials can be bundled together to form a single experi-
ment with x successes out of a total of n trials. If the experiments
are repeated many times, the relative frequency of successes in
each experiment follows the binomial distribution (e.g. [1]).

For a measurement of x and n, the best estimate P¼ x=n of the
true success probability p can be calculated. Since the ratio
P=ð1�PÞ is the best estimate of the expected ratio of successes
to failures, the best estimate of the number of successes Y of a
second experiment that has the same success probability and a
known number of failures b is

Y ¼
P

1�P
b: ð1Þ

Furthermore, methods such as Clopper–Pearson’s [2] provide a
(frequentist or classical) confidence interval ½Plow,Phigh� with
probability content b such that the fraction of experiments with
PlowrprPhigh is � b (with the lack of exact equality due to the
discrete nature of binomial distribution; see e.g. [3] for compar-
isons of various methods). By extension, these methods may also

be used to calculate the confidence interval ½Y low,Yhigh� on the
expected number of successes of the second experiment.

Such estimates may be particularly useful for characterizing
backgrounds for rare-event searches. A given background event
may have some probability p to be misclassified as a signal event.
First, a ‘‘calibration’’ experiment may allow estimation of p based
on the number of events n and the number x misclassified as
signal (the ‘‘leakage’’). A second, ‘‘search’’ experiment may pro-
vide a measurement of the number of correctly identified back-
ground events b. If background events in both experiments have
the same probability of correct classification, the expected num-
ber of misclassified events Y and a confidence interval ½Y low,Yhigh�

on the expected number may be determined.
Often, however, in order for events in the calibration and

search both to have the same probability of misclassification p,
events with different characteristics (e.g. energy, position, detec-
tor, or pixel) must be considered separately, resulting in m

separate bins of events for both calibration and search. In the
ith calibration bin there are xi misclassified events out of the total
ni calibration events, resulting in a best estimate Pi ¼ xi=ni of the
misclassification probability for events in that bin. For the search
data, the number of correctly classified events in the ith bin, bi, is
known. If the true misclassification probability, pi, of an event in
the ith bin is the same for both calibration and search data, the
best estimate for the total expected number of misclassified
events Y is

Y ¼
Xm

i

Pi

1�Pi
bi � f ðPÞ ð2Þ

where P� fPig.
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The likelihood L that xi events out of the total ni calibration
events in each bin are misclassified is simply the product of the
binomial probabilities, with

Lp
Ym

i

Pxi

i ð1�PiÞ
ni�xi : ð3Þ

The global maximum L̂ of the likelihood is trivially given by the
set P̂ � fP̂i g ¼ fxi=nig for all i. Note that it is possible to estimate
the expected leakage only if no calibration bin has zero total
events (i.e. nia0 for all i). Substitution of the set fP̂i g in Eq. (2)
yields the most likely value of the total expected leakage Ŷ ¼ f ðP̂Þ.

Unfortunately, for the case with multiple bins, most existing
methods cannot be used to calculate a confidence interval on the
total expected leakage. Here we describe a method and provide a
practical algorithm for this problem. We use the ‘‘Unified
Approach’’ described by Feldman and Cousins [4] (see also
e.g. [5]) extended to deal with nuisance variables by means of
the profile likelihood [6] without the large-sample approximation
used in e.g. [1,7]; here P are nuisance variables since they are
unknown variables for which we are not setting a confidence
interval.

2. Method

For every considered value of Y0, we calculate the profile
likelihood

L�
LðY09n,x,b,

^̂
P Þ

L̂ðŶ 9n,x,b,P̂Þ
ð4Þ

where n¼ fnig, x¼ fxig, and b¼ fbig are the data, and
^̂
P is the

combination of Pi, found by a search described in Section 2.1, that
maximizes the likelihood for the value of Y0 under test. Asymp-
totically (and far from physical boundaries), the distribution of
�2 lnðLÞ is w2-distributed with one degree of freedom [8], but
more accurate results may be obtained by determining the
expected distribution by Monte Carlo simulation. For each simu-
lated experiment, x is randomly determined based on the

^̂
P found

above. For each, the best-fit values P̂MC and
^̂
P MC are found, and

then the ratio

LMC �
LðY09n,x,b,

^̂
P MCÞ

L̂ðŶ 9n,x,b,P̂MCÞ

is calculated. If L is larger than 1�b of the simulated LMC ratios,
then Y0 is included in the confidence interval of probability
content b. Since the distributions follow the binomial distribu-
tion, the uncertainties p1=

ffiffiffiffiffiffiffiffiffi
NMC

p
, the inverse of the square root

of the number of experiments. Thus, to achieve a relative
tolerance t, conduct NMC ¼ t�2 Monte Carlo simulations. A root-
finding algorithm hunts for the smallest and largest values of Y0

that are allowed in order to return the desired confidence interval
½Y low,Yhigh�.

2.1. Formulation

A multiparameter function minimizer, such as MINUIT [9],
could be implemented to hunt for the combination of probabil-
ities Pi that maximize Eq. (3) subject to the constraint of Eq. (2).
However, this method may have exponential time complexity in
the worst case [10], making it unfeasible for the analysis of more
than a few bins. Furthermore, there would be some risk of missing
the global maximum. Instead, the combination of binomial
probabilities that maximize Eq. (3) subject to the constraint of
Eq. (2) can be found by introducing a Lagrange multiplier, l, and

solving

@

@Pi
½lnðLðPiÞÞþlðf ðPÞ�Y0Þ� ¼ 0

where Y0 is a given constant. A little algebra yields the solution to
this equation for each bin i

Pi ¼
niþxi�lbi7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlbi�ni�xiÞ

2
�4nixi

q

2ni
ð5Þ

while substituting back into Eq. (2) yields an equation for the
Lagrange multiplier

Y0 ¼
Xm

i

bi

niþxi�lbi7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlbi�ni�xiÞ

2
�4nixi

q

ni�xiþlbi8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlbi�ni�xiÞ

2
�4nixi

q �
Xm

i

biY0i: ð6Þ

Eq. (6) is really 2m separate equations, depending on the signs of
each 7 term. One of the 2m solutions yields the value of l that gives
the most likely combination of binomial probabilities (i.e.

^̂
P ) for the

desired total expected leakage Y0. Fortunately, further analysis
reveals a significant reduction in the number of viable solutions.

For any bin with bia0

l4ci �
niþxi�2

ffiffiffiffiffiffiffiffi
nixi
p

bi

is unphysical, producing imaginary or negative probabilities.
Since l must be physical for all bins, l is required to be less than
or equal to the smallest ci, i.e. lr inffcig � lc . For any bin with
bi¼0, ci-1 so that it places no constraint on l.

Table 1 lists the different limiting values of l and their
corresponding values of Pi from Eq. (5). The lower limit on the
confidence interval must have Pirxi=ni for each bin. Therefore,
Table 1 indicates that the solution must use the negative root for
each bin, reducing the problem from searching among 2m solu-
tions to solving a single equation.

It is easiest to understand the viable solutions for the con-
fidence interval’s upper bound by first noting that, other than the
constraint of Eq. (2), each term in

lnðLÞ ¼
Xm

i

lnðLiÞ

is independent. For each term, lnðLiÞ decreases monotonically
with increasing Pi4 P̂ i, and there is an inflection point at
Pi ¼ Piðl¼ ciÞ, with lnðLiÞ decreasing ever more slowly for larger
Pi.

For any bins i and j, it can be shown that

@ lnðLÞ
@Y0i

����
Pi ¼

^̂
P i

¼
@ lnðLÞ
@Y0j

����
Pj ¼

^̂
P j

:

This relation is to be expected. If, instead, the left term were larger
(smaller) than the right term, a more likely combination with the
same total Y0 could be found by decreasing Y0i (Y0j) and increasing
the other by the same amount.

In a similar way, it may be shown that the combination of
probabilities

^̂
P that maximize the likelihood for a given total expected

leakage Y0 never includes more than one bin with Pi4Piðl¼ ciÞ, and
hence more than one bin using the positive root of Eq. (2). Fig. 1 helps
visualize the reasoning. Consider any two bins i and j that both use

Table 1
Summarized analysis of the behavior of Eq. (5).

Lagrange multiplier Positive root Negative root

lo0 Pi 41 0oPi oxi=ni

l¼ 0 Pi ¼ 1 Pi ¼ xi=ni

0oloci
ffiffiffiffiffiffiffiffiffiffiffi
xi=ni

p
oPi o1 xi=ni oP�io

ffiffiffiffiffiffiffiffiffiffiffi
xi=ni

p
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