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a b s t r a c t

A space and time-dependent quantum-kinetic theory has been formulated based on previous theore-

tical approaches to study the spatio-temporal microscopic carrier dynamics in laser excited semi-

conductor materials that accounts for the effects of inhomogeneous excitation and structural

inhomogeneities due to bulk filamentation damage and micro/nano structuring. The approach involves

extensive computational effort.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

When dealing with a typical semiconductor-based optoelec-
tronic device irradiated with laser light we consider the created
electron–hole plasma (EHP) in the crystal lattice of the chosen
material. Carrier generation and recombination, electrical con-
duction and diffusion determine the behavior of the formed
plasma. The photon energy of the laser field is converted and
conserved as kinetic and thermal energy of the plasma and
thermal energy of the lattice by creation and annihilation of
phonons. All the described processes take place on different time
and space scales but they should be treated in a self-consistent
manner with the appropriate coupled equations. Inhomogeneous
excitation, bulk filamentation laser damage, etc. require inclusion
of spatial variation in the formalism describing the dynamics of
optically generated carriers and lead to space-dependent carrier
distributions.

2. Theoretical model

When a spatially homogeneous system is excited by a spatially
inhomogeneous laser field or a spatially dependent filamentary
damage is induced, the dynamical variables become inhomogeneous
and off-diagonal density matrices have to be introduced. A mixed
momentum and real space representation is most similar to classical
distribution function and is best suited for a comparison to semi-
classical kinetics described by Boltzmann equation. By using mean-
field approximation to the correlation of the electron and hole
operators and dipole-coupling approximation to the interaction
with the external electromagnetic field, an effective Hamiltonian
is obtained in terms of the ascending–descending operators. On the
basis of the effective Hamiltonian,the Boltzmann–Bloch equations

for the description of spatio-temporal dynamics of electrons and
holes of inhomogeneously excited semiconductors including the
coherent interactions of carriers and the laser light field as well as
transport due to spatial gradients and electrostatic forces are
obtained. Besides the interaction with the light field other important
interactions in the semiconductor such as Coulomb interaction
among the carriers giving rise to screening and to thermalization
of the nonequilibrium carrier distribution, as well as interaction
with phonons leading to an energy exchange between the carriers
and the crystal lattice are included. We follow the approach in Ref. [1]
but unlike them we treat all the scattering terms explicitly without

resorting to relaxation time approximation [2]. We also include terms

that lead to transitions between valence and conduction band i.e.

impact ionization and Auger recombination [3].
We consider a two-band model of an undoped semiconductor

such as GaAs. In the laser–matter interaction process the physical
variables that are directly related to observables of the system
such as optical polarizations and distribution functions are all
single-particle quantities calculated by the density matrix. To
describe space-dependent phenomena a Wigner representation of
the single-particle density matrix can be used. In Wigner repre-
sentation the space-dependent distribution functions (intraband
density matrices) of electrons and holes and polarization (inter-
band density matrix) are defined as
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where cy~k
and dy~k

ðc~k and d~k Þ denote creation (annihilation)
operators for electrons and holes with wave vector, respectively,
and the brackets denote the expectation value of these operators.
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The single-particle Hamiltonian describing the free carrier
interacting with a classical light field as well as the free phonons
is given by
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where mð~kÞ is the component in the direction of the laser field
polarization of the interband optical dipole matrix element
between the electron state jc,~kS and the hole state jv,�~kS. The
field is represented by two counterpropagating waves and the
positive frequency component is given by
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and is expanded in a Fourier series
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In the absence of an external light field the electron states are
eigenstates of an ideal periodic lattice. Deviations from this
idealized periodicity due to lattice vibrations lead to a coupling
of the different electronic states. This interaction is described by
the carrier–phonon Hamiltonian.

Hcp
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where C~q is the electron–phonon coupling constant for interac-
tion with optical phonons, erð1Þ and erð0Þ are the relative static
and optical dielectric constant, respectively, e0 is the absolute
dielectric constant of the vacuum, ‘oLO is the optical phonon
energy and V is the normalization volume. The charged carriers
interact via the Coulomb potential V~q and the Hamiltonian
describing carrier–carrier interaction processes conserving the
number of particles per band is given by:
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The carrier–carrier Hamiltonian can be separated into a mean
field (Haretree–Fock) HHF

cc part and a remaining part depending on
two-particle correlations Hcorr

cc . The effective single-particle
Hamiltonian is Heff¼H0+HHF

cc . The correlation part of the carrier–
carrier interaction Hamiltonian gives two phenomena: scattering
processes between the carriers and the screening of the bare
Coulomb interaction.

The part of the perturbation Hamiltonian that yields impact
ionization and its inverse process, Auger recombination is given
by [3,4]
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MeðqÞ ¼ V~q g~q , where V~q ¼ e2=Ve0erq2 is the Coulomb potential and
g~q is the interband-transition form factor.

3. Generalized Boltzmann–Bloch equations

By using Heisenberg’s equations of motion, the equations of
motion for the single-particle density matrices in Wigner repre-
sentation can be derived. The effective single-particle Hamilto-
nian Heff gives a closed set of equations for the distribution

functions of electrons and holes and for interband polarization.
Being Wigner distributions these quantities are functions of space
and momentum but there is a big difference of time scales
between the momentum space and the real space dynamics.
Scattering and dephasing processes lead to fast relaxation of the
microscopic variables towards their local quasi-equilibrium
values on a femtosecond time-scale while the spatial transport
happens on a much slower time-scale (10 ps to ns). Because of a
typical separation of time scales between the ~k-space and~r-space
dynamics, the influence of spatial gradients on the k-space
dynamics is often negligible. However, some of the scattering
terms in the equations of motion for the distribution functions
conserve the density of carriers and therefore the density is not
influenced by the fast relaxation processes and its spatial trans-
port cannot be neglected. In the equation of motion for the
polarization no conserved quantities exist and thus the spatial
transport of polarization is usually not important. In principle,
the complete set of equations required is, therefore, the Maxwell–
Boltzmann–Bloch–Poisson equations for the nonequilibrium dis-
tribution functions f að~k,~rÞ, interband polarization pð~k,~rÞ, electric
potential Fð~rÞ, and the laser field ~Eð~r ,tÞ, with ~k and ~r being the
two-dimensional (2D) vectors in reciprocal (momentum) space
and real space, respectively.

Keeping the first-order spatial derivatives of the distribution
functions and neglecting any spatial transport of polarization, the
equations of motion for electron and hole distribution functions
are given by the generalized Boltzmann equations for two-band
model including the coherent interband contributions.
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The lowest order contribution to the polarization is included,
where the spatial coordinate enters only as a parameter and
locally the dynamics coincide with those of the inhomogeneous
case and there are no transport effects. This lowest order picture
is sufficient to describe pump-probe experiments in which
filamentation is observed.
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is the renormalization of the single-particle carrier energy due to
exchange interaction, Vs

~q
is the screened Coulomb potential. The

electrostatic potential due to the Hartree terms in the mean field
Hamiltonian satisfies the Poisson equation.

The generation rate in the Eq. (7) is given as follows:
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where Oð~k,~rÞ is the renormalized Rabi frequency defined by
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The second term in the above expression is the internal field
responsible for Coulomb enhancement.
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