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This paper summarizes currently used techniques for simulation and computer-aided design in electron

and ion beam optics. Topics covered include: field computation, methods for computing optical

properties (including Paraxial Rays and Aberration Integrals, Differential Algebra and Direct Ray Tracing),

simulation of Coulomb interactions, space charge effects in electron and ion sources, tolerancing, wave

optical simulations and optimization. Simulation examples are presented for multipole aberration

correctors, Wien filter monochromators, imaging energy filters, magnetic prisms, general curved axis

systems and electron mirrors.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

For design and optimization of electron and ion beam equip-
ment, numerical simulation methods are indispensible. When
digital computers first became widely available, in the 1950s
and 1960s, methods were developed for computing fields, trajec-
tories and aberrations in electron lenses, and such simulations
played a key role in improving the design of electron microscopes.
Since then, the electron and ion beam equipments themselves, and
the computer simulation methods used in their design, have
progressed almost beyond recognition.

This paper surveys simulation techniques, and illustrates the
complexity of equipment designs to which they can be applied.
Topics covered include computation of fields (Section 2), optical
properties (Section 3), Coulomb interactions (Section 4), space
charge effects in electron and ion sources (Section 5), tolerancing
(Section 6), wave optics (Section 7) and optimization (Section 8).
Several illustrative examples are presented (Section 9), including
multipole aberration correctors, monochromators, imaging energy
filters, magnetic prisms, curved axis systems and electron mirrors.

2. Field computation

The three main techniques for computing electric and magnetic
fields are Finite Difference Method (‘‘FDM’’), Finite Element
Method (‘‘FEM’’) and Boundary Element Method (‘‘BEM’’). These
are widely described in the literature, so are just summarized
briefly here.

In FDM [1], the space enclosing the electrodes or polepieces is
covered with a mesh, and Laplace’s equation is approximated at

each mesh point by a ‘‘Finite Difference Equation’’, which expresses
the potential at the central point as a weighted sum of the
potentials at n surrounding points (usually n¼4 for planar or
rotational symmetry, or n¼6 for 3D simulations). The resulting
equations are solved by ‘‘Successive Over-Relaxation’’ (‘‘SOR’’) [2]
or ‘‘Multi-Grid’’ (‘‘MG’’) [3] methods, to obtain the potential
distribution.

In FEM [4,5], a deformable mesh is used, chosen to fit the
electrode or polepiece geometry (Fig. 1). The quadrilateral areas of
the mesh are called ‘‘Finite Elements’’. Using bi-linear interpolation
of the potential in each element, the field energy stored in each
finite element is expressed in terms of the potentials at the
element’s 4 nodes (Fig. 2a). The requirement that the total field
energy be minimized is used to derive a set of ‘‘Finite Element
Equations’’, relating the potential at each mesh point to the
potentials at the 8 surrounding points. The resulting 9-point Finite
Element Equations are solved by the ICCG method [6], to obtain the
potential distribution. It is also possible to use Finite Elements with
9 nodes, called ‘‘Second Order Finite Elements’’ (‘‘SOFEM’’) (Fig. 2b),
with bi-quadratic potential variation, and the elements can have
curved edges. The principle is the same as for first order FEM
(‘‘FOFEM’’), but in SOFEM [7] 25-point FE equations are obtained.
The bi-quadratic potential in SOFEM has less truncation error than
FOFEM, so is intrinsically more accurate for a given number of mesh
points. The curved elements in SOFEM are also useful for fitting
curved electrodes (e.g. spherical cathodes). Advantages of FEM
include the ease with which it handles dielectrics, ferromagnetic
materials, magnetic saturation and permanent magnets.

In BEM [8], the electrode surfaces are discretized into N small
surface elements called ‘‘Boundary Elements’’ (Fig. 3). A surface
charge density si is assigned to the ith Boundary Element, and an
integral equation is used to express the potential Fj on the jth
Boundary Element as a weighted sum of the surface charge
densitiessi on all N Boundary Elements. As the electrode potentials
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Fj are known a priori, this yields a set of N simultaneous equations
that can be solved for the surface charge densities si. The potential
F at any point can then be computed with an integral equation over
the surface charge densities si.

After computing the potential distribution with FDM, FEM or
BEM, the potential or field along the axis is usually required for
computing the optical properties. For electrostatic lenses, the axial
potential is obtained directly from the axial mesh points. For other
electron optical components, axial field functions (e.g. axial flux
density B(z) for a magnetic lens) are obtained by numerical
differentiation of the mesh-point potentials, e.g. using spline
curves.

3. Optical properties

We summarize here three methods for computing optical
properties: (i) Paraxial Rays and Aberration Integrals, (ii) Differ-
ential Algebraic Method and (iii) Direct Ray Tracing.

Paraxial Rays and Aberration Integrals: Paraxial Rays are computed
by solving a ‘‘Paraxial Ray Equation’’ and aberration coefficients

using ‘‘Aberration Integrals’’, starting from the computed axial field
functions. Paraxial ray equations can be solved by Runge–Kutta
method and Aberration Integrals can be evaluated with Simpson’s
rule. This method is easy to program and fast to run for electron
lenses and deflectors. Its main limitations are: (i) a separate integral
is required for each aberration coefficient (although using Paraxial
Rays as dummy arguments helps); (ii) components with different
symmetries (e.g. round lenses, deflectors, multipole lenses) require
individual formulae; (iii) higher order Aberration Integrals are
complicated (although algebraic manipulation languages, like
CAMAL [9] or MOPS [10], can help) and (iv) aberration formulae
for electron mirrors are very complicated [11].

Differential Algebraic (‘‘DA’’) Method: This method [12] over-
comes the above limitations. ‘‘Differential Algebraic’’ Quantities

nDv are defined, which are polynomials of order n in v variables. A
‘‘Differential Algebra’’ is defined for operations on these quantities,
such as. +, � , � , /, O, etc. These DA Quantities and Operators are
programmed as a C++ Class to form a new data type. The ray
coordinates x(z), y(z) are now expressed as functions of z along the
optical axis, in powers of the initial position (xo, yo), initial slope (xo

0 ,
yo
0 ) and initial energy deviation (DV) at object plane zo. The

5 quantities (xo, yo, xo
0 , yo
0 , DV) are our expansion variables for the

aberrations, so we use DA Quantities with v¼5 variables. The order
n used for the DA Quantities is the maximum rank to which we
want to compute the aberrations. We replace the real coordinates
and slopes (x, y, x0, y0) in the equations of motion by their DA
Quantities (X, Y, X0, Y0) and then solve the equations of motion
numerically, e.g. using a Runge–Kutta formula, in a single DA Ray
Trace from object plane zo to image plane zi. The DA Ray Trace maps
the system aberrations, up to rank n, as functions of z. The first order
terms in the DA Quantities contain the paraxial rays, and the ith
order terms contain the ith rank aberrations.

For applying the DA method, the axial field functions must be
differentiable to n-th order. We achieve this in our software by
fitting the axial fields with Hermite functions [13].

The DA method requires only a single Ray Trace, no Aberration
Integrals, and handles any type of symmetry. It can compute
aberrations of electron mirrors, by writing the equations of motion
with time t as independent variable [14]. Relativistically correct
aberrations up to n-th rank can be obtained, simply using the
relativistically correct equations of motion.

Direct Ray Tracing: This involves solving the Newton–Lorentz
equation of motion

d

dt
ðmvÞ ¼ qðEþv� BÞ

directly, where m¼particle mass, q¼charge, v¼velocity,
E¼electric field, B¼magnetic flux density. In our implementation,
the E and B fields at any point are obtained by fitting the numerical
axial field functions with Hermite functions and using power series
expansions for the field components at off-axis points. Trajectories
are computed from zo to zi with any given initial position and slope,
and aberration diagrams can be plotted directly (Fig. 4). By
choosing rays with suitable initial conditions at zo, and solving a
few simultaneous equations, the aberrations at the image plane zi

can be extracted from the direct ray trace.

4. Discrete Coulomb interactions

In electron and ion beams, there are Coulomb forces between
every pair of particles. The axial components of these forces
increase the energy spread (‘‘Boersch effect’’) [15], and the trans-
verse components cause radial broadening (‘‘Loeffler effect’’) [16].
These effects increase with beam current and limit the throughput
in charged particle lithography [17].

Fig. 1. Example of finite element mesh layout for a magnetic lens. The quadrilateral

finite elements are arranged to fit the magnetic circuit and coil winding geometry.
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Fig. 2. Finite Elements. (a) First order—with 4 nodes, straight edges and bi-linear

potential variation. (b) Second order—with 9 nodes, curved edges and bi-quadratic

potential variation.

Fig. 3. Boundary Element Method. Electrode surfaces are discretized into small

Boundary Elements with surface charge densities si (i¼1, y, N), which are

computed to satisfy the known boundary potentials Fj (j¼1, y, N).
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