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a b s t r a c t

The Boundary Element Method for solving the Laplace and Poisson equations for electrostatic systems will

be outlined, with the emphasis on 3D systems and the commercial CPO programs. Some applications to

charged particle optics will be described. Since the BEM is a charge-based method it is ideally suited for

systems that include space-charge and/or cathodes. It is also exceptionally accurate and can deal easily

with electrodes of very different sizes. Several ‘benchmark tests will be presented, in which systems with

known analytic solutions are used to illustrate the accuracy and versatility of the programs.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction and historical context

The Boundary Element Method (BEM), also known as the
Integral Equation Method, has been used in many fields, including
those of electrostatics and charged particle optics (where it has also
been called the Charge Density Method and the Surface Charge
Method). In this review we shall concentrate on the use of the BEM
in the CPO programs of CPO Ltd. [1] but will start with a brief
description of the historical context and will include a brief review
of other applications of the BEM to charged particle optics.

The first application of the BEM to electrostatics seems to be
given by Maxwell [2,3] in 1878, who used it to find the capacitance
of a thin square plate with sides of unit length. He subdivided the
plate into 36 square segments that hold 6 independent charges and
manually adjusted those charges to try to obtain a uniform unit
potential at the centers of all the segments, using Coulomb’s Law.
The main approximation that he made was that each segment has a
uniform charge density but nevertheless he obtained a value that is
accurate to 0.8% according to the latest BEM calculations [4] (and
interestingly there is still no analytical solution).

The first use of the BEM in charged particle optics was given by the
Manchester group, who used it to calculate the focal properties of two-
tube electrostatic lenses [5]. This early work culminated in a standard
work on electrostatic lenses [6] and has continued since then.

2. Outline of the BEM

The BEM, as applied to electrostatic systems, is based on the fact
that when voltages are applied to conducting electrodes, charges

appear on the surfaces of those electrodes. These charges are the
only sources of all the potentials and fields in the system. So in the
BEM the surfaces of the electrodes are effectively replaced by these
sheets of surface charge. Only the surfaces have to be modeled and
it is not necessary to create a grid of points in the space enclosed by
the electrodes, nor is it necessary to enclose a system.

In the version of the BEM used in the CPO programs 3D electrode
surfaces are divided into flat rectangular or triangular segments, each of
which has a uniformly distributed charge over its surface. The flatness
of the segments and the uniformity of their charge densities represent
the only significant approximations (but see below the recent use of
non-uniform charge distributions). As with Maxwell, the segment
charges are adjusted to make the potentials at the centers of the
segments equal to the voltages applied to the parent electrodes (that is,
Dirichlet boundary conditions are used – dielectrics and Neumann
boundary conditions will be dealt with below). This adjustment is
carried out computationally by setting up the matrix that connects the
mid-center potential of each segment to the charges on all the
segments and then inverting the matrix to obtain the charges that
exist for the given set of applied voltages. Potentials and fields can then
be calculated anywhere in space.

The errors in setting up the matrix are essentially negligible because
the potential distributions of uniformly charged 3D triangles and
rectangles are known analytically [7], including at the surface, and also
the potential distributions of 2D segments with planar or rotational
symmetry can be calculated very accurately [8]. Similarly there is
essentially negligible error in inverting the matrix. The errors in
calculating the final potentials, which are continuous, are also essen-
tially negligible while the corresponding fields are obtained by
numerical differentiation when necessary. The errors due the flatness
and charge uniformity of the segments remain of course and methods
of reducing these are discussed below.

It is not necessary to invert the matrix for each new set of applied
voltages. Instead the program pre-calculates the sets of charges that
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correspond to one of the applied voltages (of which the number is
usually much smaller than the number of segments) being unity while
all the others are zero. These sets are called the ‘unit charges’ and the
appropriate linear combinations of them can be used for particular sets
of applied voltages.

The BEM is mathematically and computationally more complex
than the more traditional Finite Difference and Finite Element
Methods (FDM and FEM), but the BEM offers several advantages.
Perhaps the most important of these is the inherent accuracy of the
method; for example it was shown some years ago [9,10] that for
non-space-charge electrostatic 3D problems the CPO programs are
typically one or two orders of magnitude more accurate than two
representative FDM and FEM programs for the same computing
time (or typically one or two orders of magnitude faster for the
same accuracy), although this comparison has not been carried out
for the more recent versions of all these methods. A comparison has
also been carried out [11] for the space-charge simulation of a CERN
laser ion source, where it was found that the CPO, KOBRA and IGUN
codes exhibited good agreement, but no statements were made
about the comparative computing times.

Another obvious advantage of the BEM is that it can deal easily
with electrodes of very different sizes, such as nano-sized electro-
des in centimeter-sized systems.

As a charge-based method another strength of the BEM lies in
dealing with systems that include space-charge and/or cathodes, as
illustrated below.

A disadvantage is that the BEM tends to integrate trajectories
more slowly, but a technique for alleviating this is discussed below.
Another slight disadvantage is that the matrix referred to above is
fully populated and therefore can take a comparatively long time to
invert, although methods have been suggested for alleviating this
(see for example [12,13]), which are not used at present in the CPO
programs. In fact the maximum time taken to invert the matrix
with a 32-bit 2.2 GHz PC is approximately 5 h when the number N

of segments is 8000 (the present maximum) and the dependence
on N is approximately N3.5 (the exponent here is larger than the
theoretical value 3).

3. Computational details

Although the potential distributions of uniformly charged 3D
triangles and rectangles are known analytically the formulations
are complicated and so take a comparatively long time to compute.
To give faster computing times the CPO programs use approxima-
tions where appropriate. As a part of this technique the user is
asked to specify the inaccuracy e that is desired for the calculation
of potentials, which might typically be 10�3 in the initial stages of a
new simulation or 10�7 for the final results. As an example of the
technique we consider the calculation of the potential at a distance
s from a triangular segment that has a representative length w

(which we take as the maximum distance from the center of gravity
to any corner). If the program judges that w/s is sufficiently small it
will use the simplest approximation and treat the segment as a
point charge. This happens when w/so f(e), where the dependence
of f on e is built into the program, which was previously determined
analytically by looking at the expansion of the potential in powers
of w/s. In fact f(e) also depends slightly on the shape and orientation
of the triangle, but a global average is used. When w/s is not small
enough for this level of approximation the program next considers
adding the first-order term in the expansion of the potential in
powers of w/s. The dependence of this term on the shape and
orientation of the triangle is also built into the program, which is
therefore able to calculate the relevant parameters of each segment
and store them. If this approximation is inappropriate then the
program next considers the use of quadrature, using 7 quadrature

points for a triangle (9 for a rectangle), the positions of which are
pre-calculated and stored. The corrected Coulomb approximation
described above is used for each of the quadrature points. Finally, if
the potential is required at a point that is very near or on the
segment then one of the exact expressions (in-plane or out-of-
plane) is used for the potential, where again the necessary
parameters of the triangle are pre-calculated and stored. In this
way the program calculates the potential due to each triangle in the
shortest time for the desired inaccuracy. This general technique is
also used for 3D rectangles and 2D circular hoops, with additional
types of approximation available for the hoops, namely the use of
multipole moments (dipole, quadrupole and octopole, all pre-
calculated) and near-axis approximations. Electrostatic fields are
also calculated in an analogous way or are obtained by numerical
differentiation, using the potentials at the 4 corners of a tetra-
hedron (in 3D systems) that surrounds the point. Extra care is taken
when calculating the field at points that are near to electrode
surfaces, if necessary dividing segments into smaller parts (which
takes a longer computing time, but fortunately particles usually
spend only a small fraction of the flight time in such situations). The
criteria for selecting the appropriate approximations have usually
been derived analytically but all of them have of course been
carefully tested in practice.

As mentioned above, the errors due to the segments being flat
and uniformly charged can be substantially reduced. Dealing first
with the errors caused by the segments being flat, consider a 3D
cylinder that has been subdivided into flat rectangular segments,
all of which touch the cylinder at their outer edges but are
otherwise inside the cylinder. The average distance s of the surface
of the segments from the axis is therefore less than the radius r of
the cylinder, which thus gives rise to an ‘inscribing’ error. To correct
this the effective radius of the cylinder is increased before
subdividing it by a factor that depends only on the angle subtended
at the axis by a rectangle. Similarly for a spherical surface the factor
depends on the average solid angle subtended by the triangles into
which the sphere is subdivided. These factors were derived
analytically but then slightly modified after practical tests.

The more interesting error is that due to the charge uniformity
of the segments (see also below for a recent development). Clearly
this error decreases when the number of segments is increased but
the maximum number of segments is limited in practice by the
available computer memory and the computing time. An extra-
polation technique is therefore recommended, an illustration of
which is given by the parameters of the two-tube lens treated in the
CPO ‘example’ file xmpl2d01. Increase in the total number N of
segments from 200 to 800 causes, for example, the object focal
length f1 of the lens to decrease from 0.799716 to 0.799684. More
interestingly, a plot of f1 versus 1/N2 is approximately straight, as
shown in Fig. 1, giving an intercept at f1¼0.799682, which is
therefore effectively the value for N¼N. Analogous linear depen-
dences are frequently found, sometimes with different exponents,
for parameters such as potentials, fields, lens parameters or
capacitances [14] (see also the CPO inbuilt help). This technique
of ‘extrapolating to infinity’ is essential in some studies, such as the
determination of the capacitance of the unit square with an
estimated fractional inaccuracy of only 2�10�6 [4].

Although trajectory integration is very accurate, because the
potential and field distributions are continuous, it can be slow,
because all the segment charges are involved. To alleviate this a
‘mesh’ method is available in addition to the direct method. In the
mesh method a grid of mesh points is created in the volume traced
out by the beam. These points are created only as required and the
potentials and fields at them are stored for use when other later
trajectories pass near these points. The field at points between
mesh points are obtained by bilinear interpolation using the fields
at the corners of the relevant box (the mesh spacings are usually
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