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Abstract

A thermodynamic analysis has been done to enhance understanding of the relation between various mathematical models for elec-
trochemical supercapacitor pores. For the same capacitive charge/discharge experiment a variety of one-dimensional mathematical
model equations concerning the transport of ions and double layer charge/discharge along the pore are shown to be indistinguishable.
Some of those indistinguishable equations could be interpreted as derived from diffusional mechanisms while others appear as derived
from migrational mechanisms. Ohmic resistivities and diffusivities obtained in such case are not contradicting results but characterize
identical physical processes. The results are valid as long as the assumptions of irreversible thermodynamics of local equilibrium along
the pore and of linearization of the flux equations hold.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Electrodes for electrochemical double layer capacitors
(EDLCs) or electrochemical supercapacitors typically con-
sist of porous materials such as carbon [1]. The transport
properties for ions in the pores are essential for the per-
formance of supercapacitor electrodes [1–6]. Transport
parameters may be obtained from dynamic voltammetry
experiments, especially potential steps and impedance
spectroscopy. Such experiments are commonly evaluated
using mathematical models based on principles originat-
ing from de Levie’s seminal paper from 1963 [1,7] where
the main transport resistance is assumed to be the ohmic
resistance to ionic migration in the pore electrolyte solu-
tion. However, recent work has shown that potential step
experiments also may be successfully evaluated using
models based on Fickian diffusion of ions in the pores

with effective diffusivities as the main transport parame-
ters [5,8–11].

The purpose of this work is to show that there is no con-
tradiction in this situation. Such voltammetry experiments
under frequently used experimental conditions cannot give
unique information on the transport mechanisms for the
ions. The fundamental thermodynamic analysis in this
paper shows that for the same experiment a variety of
mathematical model equations are equally valid. Some of
those equivalently valid equations could be interpreted as
derived from diffusional mechanisms while others appear
as derived from migrational mechanisms.

2. Model assumptions

2.1. The model pore at equilibrium

We assume a straight cylindrical pore with walls of an
electrically conducting material e.g. carbon (see Fig. 1).
The pore is filled with a 1,1-electrolyte solution, typically
KOH or KF in water. The diameter of the pore is
assumed to be substantially greater than twice the Debye
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length of the electrolyte. As a consequence there is a cen-
tral part of the pore solution with constant ionic concen-
trations at equilibrium, while close to the pore wall,
within the diffuse part of the double layer, concentrations
vary with the radial coordinate. At typical electrolyte con-
centrations used for electrochemical supercapacitors the
diffuse layer is collapsed and only �0.5 nm in thickness
[12]. At equilibrium the Galvani inner potential of the
electrolyte is constant within the central core of the pore
solution while it varies with the radial coordinate in the
diffuse part of the double layer. On the other hand at
equilibrium the electrochemical potentials of the ions have
the same value everywhere in the system including the dif-
fuse double layer and ions adsorbed on the surface. The
values of the Galvani potential, the electrochemical poten-
tials and the concentrations in the central core of the pore
and the corresponding values in the external solution out-
side the pore mouth are equal. The equilibrium relation
between Galvani potential and concentrations of ions in
the pore is discussed below.

2.2. The model pore during charge/discharge

At non-equilibrium conditions we assume that the driv-
ing forces for the flow of ions are the gradients in the elec-
trochemical potentials and that linearized flux equations
according to classical irreversible thermodynamics (CIT)
are valid (see e.g. [13]), i.e. flux equations like Eq. (16)
below (note that Onsager’s reciprocal relations are not
needed in this work). We assume a one-dimensional case
where the gradients in electrochemical potentials have axial
directions.

Furthermore we adopt the local equilibrium assumption
of CIT. In Fig. 1 differential (infinitesimal) cells along the
pore have been illustrated. Local equilibrium assumption
means that there is an assumed equilibrium in each cell,
however different in different cells, although the whole pore
is not in equilibrium. This is a standard postulate in CIT.

The ohmic resistivity of the solid material is assumed
negligible.

3. Mathematical model equations

3.1. Transport in the core bulk solution

The following Eq. (1) give the fluxes of the ions in the
core bulk electrolyte space. In the first place we assume that
only cations are desorbed/adsorbed and transported during
charge/discharge i.e. we assume that the transport number
for anions equals zero. In that way we obtain a simplest
possible example useful for illustrating the principles of
the theory. A more general treatise then follows.

Since we assume that the concentration and inner poten-
tial are constant over the cross section in this core we
obtain a one-dimensional equation. In the first place we
assume for simplicity that concentrations are so small that
the Nernst–Einstein equation is valid.
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where index 1 refers to cation and index b to core bulk.
Those equations relate the phenomenological coeffi-

cients (Lik) of classical irreversible thermodynamics to
dilute theory transport equations for very dilute electrolyte
solutions. The CIT driving force is the gradient of the elec-
trochemical potential. For higher concentrations the same
classical irreversible thermodynamics linearized formula-
tion holds as long as the interaction between cations and
anions may be neglected or, as we have assumed, only cat-
ions are transported. However, the relation between L1b

and diffusivity seen in Eq. (1) is of course no longer valid.

3.2. Surface-related transport

In the following equation the flux is calculated per the
cross sectional pore space. This is the linearized irreversible
thermodynamics transport equations for the cations
adsorbed in the double layer (in the sense that they reside
either adsorbed on the surface or in the diffuse layer) i.e.
we assume that the electrochemical potential gradient is
the driving force. Transport is taking place only in the axial
direction of the pore since the electrochemical potential
gradient in the radial direction is assumed to be negligible.
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where index d refers to the double layer.

3.3. Resulting transport equation

We now add the flow of cations in the bulk solution and
the surface related flow both calculated per cross sectional
area of the pore.

J 1 ¼ J 1b

Ab

Apore

þ J 1d ¼ � L1b

Ab

Apore

þ L1d

� �
o~l1

ox
¼ �L1

o~l1

ox

ð3Þ

Double 
layer

Core bulk
solution

At equilibrium the electrolyte concentration and Galvani potential 
have the same values in  the core bulk as outside the pore

At non-equilibrium the electrochemical 
potential has the same value all over each 
cell due to the local equilibrium 
assumption but differ between cells due
to the axial gradient (= the driving force)

Differential
cells

Fig. 1. A schematic picture of a model pore.
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