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a b s t r a c t

Arrays of Silicon Drift Detectors (SDD) were designed, produced and tested. These arrays are the central

part of an X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C–Fe)

fluoresced by ambient radiation on the investigated celestial object. The basic building element (or cell)

of the arrays consists of a single hexagonal SDD. Signal electrons drift toward the center of the hexagon

where a very low capacitance anode is located. The hexagonal shape of an individual SDD allows for a

continuous covering of large detection areas of various shapes. To match the number of SDD cells with

the external Application Specific Integrated Circuit (ASIC), two arrays, one with 16 and another with 64

cells were developed. One side of SDDs, called the window side, is a continuous thin rectifying junction

through which the X-ray radiation enters the detector. The opposite side, called the device side contains

electron collecting anodes as well as all other electrodes needed to generate the drift field and to sink

leakage current produced on Si–SiO2 interface. On both sides of the detector array there is a system of

guard rings, which smoothly adjusts the voltage of the boundary cells to the ground potential of the

silicon outside the sensitive volume. The drift voltage inside the detector is generated by an implanted

rectifying contact, which forms a hexagonal spiral. This spiral produces the main valley where signal

electrons drift as well as the voltage divider to produce the drift field. System performance is shown by

a spectrum of Mn X-rays produced by the decay of 55Fe.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Measurement of X-rays from the surface of planetary bodies
provides information regarding their surface elemental composi-
tion. Absorption of radiation results in characteristic fluorescence
from the material being irradiated. By measuring the spectrum of
the radiation and by identifying lines in the spectrum, the
emitting element(s) can be identified. This technique works for
any object that has no significant absorbing atmosphere and that
has significant surface irradiation. Examples are: our Moon, the
icy moons of Jupiter, the moons of Mars, the planet Mercury,
asteroids and comets. Two objects of particular interest to NASA
are (i) our Moon and (ii) Europa, an icy moon of Jupiter. Both are
possible candidates for a future NASA mission that may involve
surface elemental mapping using an orbiting spectrometer [1–3].
As such, Brookhaven National Laboratory (BNL) and NASA
Marshall Space Flight Center (MSFC) have teamed together to

design a novel X-Ray Spectrometer (XRS) that utilizes an array of
hexagonal Silicon Drift Detectors (SDDs) coupled to an Applica-
tion Specific Integrated Circuit of BNL design.

On the lunar surface, the fluorescence X-rays are produced by
solar wind on the illuminated part of the Moon. The SDD XRS
would be positioned on a satellite orbiting the Moon, and pointed
towards its surface. The sensitive area on the lunar surface, called
the footprint, is defined by a simple system of collimators, one for
each SDD of the array. The timing of the detected X-ray is thus
associated with the area being investigated. The Europa XRS
would be similar; however, due to the large amount of ambient
radiation around Europa there will be X-ray mirrors in front of the
XRS rather than simple collimators. This paper reports on the XRS
for the lunar mission, which has different requirements than the
mission orbiting Europa. To achieve an effective lunar footprint of
5 km�5 km from a satellite that is located 50 km above the lunar
surface, a spectrometer with a total area of �500 cm2 is required.
The elements of interest are: Na, Mg, Al, Si, P, K, Ca, Ti, Cr and Fe.
In other words the XRS has to provide energy resolutions better
than 200 eV FWHM up to about 10 keV. The intrinsic (Fano) line
width at 10 keV is 156 eV, which specifies the electronic width
below 124 eV FWHM or a pulser width of less than 14 electrons
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r.m.s. This noise performance requirement has to be achieved
under very strict maximum power dissipation, of less than
20 mW/cm2. Detector cooling, not included in the power budget,
is provided for operation down to about �40 1C.

The 500 cm2 lunar XRS is based on pixelated SDD detectors
each covering an area of 0.2 cm2. The anodes are directly wire-
bonded to the inputs of a low noise multi-channel ASIC developed
in a commercial CMOS 0.25 mm technology. The decision not to
integrate the first transistor onto the high-resistivity silicon of the
SDD was justified on power dissipation and for economic reasons.
At the present state of technology (2009) the lowest noise that
can be obtained is by integrating the first transistor of the readout
chain directly onto the detector [4,5]. The price to pay for this
integration is (i) larger power dissipation in the transistor
integrated on the detector when compared to the matching
transistor in 0.25 mm CMOS technology, working slightly ‘‘below
threshold’’ and (ii) a more complex production process of SDD
related to the presence of the transistor, which decreases the yield
of SDDs. Moreover, progress in the low noise main stream CMOS
technology is such that the noise performance of cost-effective,
fully external electronics approaches that of a system with the
first transistor integrated into the detector. The noise specifica-
tions of the Lunar mission XRS were more than satisfied with SDD
anodes bonded to the matched ASIC.

2. Design of spiral SDDs.

The decision to choose a spiral SDD [6] as an elementary cell
for the lunar mission XRS was a consequence of the power
constraints combined with the economical production of the
SDDs. The spiral is made of a rectifying p-type implant on high-
resistivity n-type silicon wafer. This serves a double purpose:
firstly, it provides the p+

�n junction, which fully depletes the
bulk of the SDD, and secondly, it acts as a voltage divider, which
creates the drift field parallel to the large surface of the detector
responsible for the transport of signal electrons toward the small
area centrally located anode. The SDDs for the XRS must be fully
sensitive to low energy X-rays down to several hundred eV. The
side from which the radiation enters, henceforth called the
window side, has to be a very thin continuous rectifying junction
resulting in a constant potential on this side of the SSD. The
opposite side of the detector, henceforth called the spiral side, has
to provide the full drifting potential of the detector.

The problem of providing an optimal form of the potential on
the spiral side (surface) of the detector to minimize the drift time
and the diffusion of signal electrons within the body of the SDD
was solved by method of calculus of variation in Ref. [6]. The
resulting radial dependence of the potential at the spiral side
written in Eq. 2.12 of Ref. [6] can be written in dimensionless
variables as: uðrÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r=Rmax

p
, where u(r) is the ratio of the

negative potential at r and the maximal applicable negative
potential Umax¼qNdt2/(2e0er) at the outside radius of the spiral
Rmax. Nd is the doping density of the wafer, q the absolute value of
the charge of the electron, t the detector thickness, e0 the
permittivity of vacuum and er the relative dielectric constant of
silicon.

Let us denote the total pitch of the spiral p(r) (where r is
understood to be a function of the angle f), which is the sum of
the width of the implanted spiral w(r) and of the width of the left
silicon dioxide sd(r). We will constrain the spiral to keep the ratio
of their widths w(r)/p(r) to be constant C (C¼2/3 in our case), so
one spiral defines all spirals in an unambiguous way. We will
search for the equation of the inner radius of the total spiral
r¼r(f), f having its usual meaning as the polar angle in the
system of cylindrical coordinates. The current flows in

the implanted spiral and the voltage drop along one loop of the
spiral is 2prIr/w(r), where I is the current flowing in the
implanted spiral and r is the resistivity of the implant per square.
The voltage drop in one loop of the spiral is related to the change
in the desirable voltage in the radial direction by the expression
du/dr� p(r). We can write the requirement of the desirable
voltage drop along the spiral by the following equation:

2pr=pðrÞ ¼ a du

dr
pðrÞ, ð1Þ

where a new constant a¼CUmax/(Ir). From Eq. (1) the spiral width
can be written explicitly as

pðrÞ ¼ K
ffiffiffi
r
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�r=Rmax
4
p

, ð2Þ

where we substituted for du/dr from the explicit form and
introduced a new constant K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pRmax=a

p
.

The second condition to be satisfied by the spiral is the
requirement that increase in spiral radius r after a full revolution
(f¼2p) should be the pitch p(r). This condition can be written as
the following equation:

rðjþ2pÞ ¼ rðjÞþpðrÞ: ð3Þ

Eq. (3) can be replaced by a somehow more restrictive
differential equation

dr

dj2p¼ pðrÞ, ð4Þ

which assumes that the second and all higher-order derivatives of
the radius of the spiral as a function of the polar coordinate are
negligible when compared to its first derivative. Substituting
Eq. (4) into Eq. (2) we obtain the separable differential equation
from which the inverse of the equation for the spiral can be
written explicitly as

j�j0 ¼ 2p
Zr

r0

dr

K
ffiffiffi
r
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�r=Rmax
4
p ¼

4p
K

ffiffiffi
r
p
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ð5Þ

where F([1/2,1/4], [3/2], x) is the generalized hyper-geometrical
function of the variable x with the upper parameters [1/2,1/4] and
the lower parameter [3/2]. To calculate the inverse of this function
is not practical for routines of the graphics editor to be
programmed to draw the spiral. A practical simplification can be
obtained by approximating the function F([1/2,1/4], [3/2], x) with
1 for xo0.5 or equivalently approximating

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r=Rmax

4
p

¼ 1 in the
denominator of the integral in Eq. (5). Arithmetic in Eq. (5)
simplifies considerably and after easy manipulations we can
obtain the explicit equation of the spiral

rðjÞ ¼ K

4p ðj�j0Þþ
ffiffiffiffiffi
r0
p

� �2

; rðjÞrRsw ð6Þ

where Rsw is the largest radius for which the approximation
leading to Eq. (6) is valid. Eq. (6) describes a simple quadratic
spiral passing through the point (r0, f0) given by the initial
condition according the extent of the anode region of the SDD. The
quadratic spiral ends at polar angle fsw where the radius of the
spiral reaches the value Rsw. From that point (Rsw, fsw) on the rest
of the spiral (RswrrrRmax) is approximated by a linear spiral

rðjÞ ¼ rswþ
psw

2p ðj�jswÞ; RswrrðjÞrRmax ð7Þ

where psw is the value of the width of the spiral reached by the
quadratic spiral of Eq. (6). This value of the spiral width
guarantees the smooth behavior of the radial electric field at the
surface of the spiral side of the detector at the transition between
the two approximations of the ideal spiral. The programmed
hexagonal spiral has the values of the spiral calculated at all
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