

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Radioactive contamination of ZnWO₄ crystal scintillators

P. Belli^a, R. Bernabei^{a,b,*}, F. Cappella^{c,d}, R. Cerulli^e, F.A. Danevich^f, A.M. Dubovik^g, S. d'Angelo^{a,b}, E.N. Galashov^h, B.V. Grinyov^g, A. Incicchitti^{c,d}, V.V. Kobychev^f, M. Laubenstein^e, L.L. Nagornaya^g, F. Nozzoli^{a,b}, D.V. Poda^{e,f}, R.B. Podviyanuk^f, O.G. Polischuk^f, D. Prosperi^{c,d,1}, V.N. Shlegel^h, V.I. Tretyak^f, I.A. Tupitsyna^g, Ya.V. Vasiliev^h, Yu.Ya. Vostretsov^g

^b Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Rome, Italy

^d Dipartimento di Fisica, Università di Roma "La Sapienza", 00185 Rome, Italy

^e INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ), Italy

^f Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine

^g Institute for Scintillation Materials, 61001 Kharkiv, Ukraine

^h Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russian Federation

ARTICLE INFO

Article history: Received 5 August 2010 Received in revised form 4 October 2010 Accepted 6 October 2010 Available online 14 October 2010

Keywords: ZnWO₄ crystal Scintillation detector Radiopurity Low background measurement

1. Introduction

ABSTRACT

The radioactive contamination of ZnWO₄ crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg h. Monte Carlo simulation, time–amplitude and pulse–shape analyses of the data have been applied to estimate the radioactive contamination of the ZnWO₄ samples. One of the ZnWO₄ crystals has also been tested by ultra-low background γ spectrometry. The radioactive contaminations of the best ZnWO₄ samples are estimated to be less than 0.002 mBq/kg (²²⁸Th and ²²⁶Ra), the total α activity is 0.18 mBq/kg. The β active ⁶⁵Zn and the α active ¹⁸⁰W have been detected in ZnWO₄ crystals. The effect of the re-crystallization on the radiopurity of the ZnWO₄ crystal has been studied. The radioactive contamination of the ceramic components of the set-ups used in the crystals growth has been checked by low background γ spectrometry. Some ideas for future improvement of the radiopurity level of ZnWO₄ crystal scintillators are briefly discussed.

© 2010 Elsevier B.V. All rights reserved.

The luminescence of zinc tungstate (ZnWO₄) was studied sixty years ago [1]. Large volume ZnWO₄ single crystals of comparatively high quality were grown [2] and studied as scintillators in the eighties [3]. The main characteristics of the ZnWO₄ scintillators are given in Table 1. The material is non-hygroscopic and chemically resistant. The use of ZnWO₄ scintillators was proposed to search for double beta decay in Ref. [4] for the first time. The first low background measurement with a small ZnWO₄ sample (mass of 4.5 g) was performed in the Solotvina Underground Laboratory (Ukraine) at a depth of \approx 1000 m of water equivalent (mwe) in order to study its radioactive contamination, and to search for double beta decay of zinc and tungsten isotopes [5]; the possibilities to use ZnWO₄ crystals in the field of dark matter were also discussed. The luminescence of ZnWO₄ down to helium temperature was studied in Ref. [6] and

E-mail address: rita.bernabei@roma2.infn.it (R. Bernabei). ¹ Deceased subsequently investigations of $ZnWO_4$ crystals as scintillating bolometers have recently been performed [7–9].

The radioactive contamination of a 119 g ZnWO₄ scintillator was measured to be in the mBq/kg level, in the Solotvina Underground Laboratory [16,9]. Long-time low background scintillation measurements using several ZnWO₄ crystal scintillators (with mass in the range 0.1 – 0.7 kg) have been performed at the LNGS with the aim to search for double β processes in zinc and tungsten isotopes [17–19]. The data collected with different ZnWO₄ crystals in the same set-up also allow the estimation of the level of the radioactive contamination of the material. One sample has also been tested by ultra-low background HP Ge γ spectrometry. The effect of the re-crystallization procedure on the radioactive contamination of this material has also been investigated. Moreover, a few samples of ceramics, the most contaminated components in the set-ups used in the crystals growth, have also been measured by a low background HP Ge detector.

2. ZnWO₄ crystal scintillators

Four clear, slightly colored ZnWO₄ crystal scintillators have been used in the present study. All the samples are listed in Table 2.

^a INFN sezione Roma "Tor Vergata", I-00133 Rome, Italy

^c INFN sezione Roma "La Sapienza", I-00185 Rome, Italy

^{*} Corresponding author at: Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Rome, Italy

^{0168-9002/\$ -} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.nima.2010.10.027

Table 1

Properties	of the	ZnWO ₄	crystal	scintillators
Properties	of the	ZnWO ₄	crystal	scintillators

Density (g/cm ³)	7.87 [2]
Melting point (°C)	1200 [2]
Structural type	Wolframite [10–13]
Cleavage plane	Marked (010) [14]
Hardness (Mohs)	4-4.5 [15]
Wavelength of emission maximum (nm)	480 [1,2,15]
Refractive index	2.1-2.2 [15]
Effective average decay time $a(\mu s)$	24 [5]

^a For γ rays, at room temperature.

The samples ZWO-1 and ZWO-2 were produced in the Institute for Scintillation Materials (ISMA, Kharkiv, Ukraine) from crystal ingots grown in platinum crucibles by the Czochralski method [16,20]. The ZnWO₄ compounds used to grow the crystals were synthesized from two batches of zinc oxide from different producers. The crystal ZWO-3 was obtained by re-crystallization from the sample ZWO-2 at the ISMA. The sample ZWO-4 was produced in the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia) by the low-thermal gradient Czochralski technique in a platinum crucible [21].

3. Measurements

3.1. Low background scintillation measurements

The measurements (see Table 2) have been carried out in the DAMA/R&D set-up [17,18,22] at the LNGS having average overburden of about 3600 mwe. In each measurement the ZnWO₄ crystal was fixed inside a cavity of \emptyset 49 × 59 mm in the central part of a polystyrene light-guide 66 mm in diameter and 312 mm in length. The cavity was filled up with high purity silicone oil. The light-guide was optically connected, on the opposite sides, to two low radioactive EMI9265-B53/FL 3 in. photomultipliers (PMT). The light-guide was wrapped by PTFE reflection tape. The detector was surrounded by Cu bricks and sealed in a low radioactive air-tight Cu box continuously flushed with high purity nitrogen gas (stored deeply underground for a long time) to avoid the presence of residual environmental radon. The Cu box was surrounded by a passive shield made of 10 cm of high purity Cu, 15 cm of low radioactive lead, 1.5 mm of cadmium and 4/10 cm polyethylene/paraffin to reduce the external background. The whole shield has been closed inside a Plexiglas box, also continuously flushed by high purity nitrogen gas.

In order to suppress the background caused by γ rays from the PMTs, two polished high purity quartz light-guides (\varnothing 66 \times 100 mm) were optically connected to the opposite sides of the polystyrene light-guide during the Run 3 and Run 5.

An event-by-event data acquisition system accumulates the amplitude and the arrival time of the events. The sum of the signals from the PMTs was recorded with the sampling frequency of 20 MS/s over a time window of 100 μ s by a 8 bit transient digitizer (DC270 Acqiris).

The energy scale and the energy resolution of the ZnWO₄ detectors were measured by means of ²²Na, ⁶⁰Co, ¹³³Ba, ¹³⁷Cs and ²²⁸Th γ sources. The energy dependence of the energy resolution can be fitted by the function: *FWHM*_{γ} (keV) = $\sqrt{a+bE_{\gamma}}$, where E_{γ} is the energy of γ quanta in keV. For instance, the energy spectra accumulated by the detector ZWO-4 with ⁶⁰Co, ¹³⁷Cs and ²²⁸Th γ sources are shown in Fig. 1. The parameters *a* and *b* were determined as *a*=2398(570) keV² and *b*=7.96(72) keV, respectively. Both the calibration and the background data were taken in the energy interval ~0.05–4 MeV.

The energy distributions accumulated over Runs 1, 2, and 4 with the $ZnWO_4$ scintillation detectors in the low background set-up are shown in Fig. 2. The background spectra accumulated over Runs

2 and 3 with ZnWO₄ crystals before and after the re-crystallization are depicted in Fig. 3 (Top) while the energy spectra accumulated over Runs 4 and 5 (before and after the installation of the additional quartz light-guides) are shown in Fig. 3 (Bottom). The spectra are normalized on the mass of the crystals and time of the measurements. A few peaks in the spectra can be ascribed to γ quanta of naturally occurring radionuclides ⁴⁰K, ²¹⁴Bi (²³⁸U chain) and ²⁰⁸Tl (²³²Th) from materials of the set-up. As one can see from Fig. 3 (Bottom), the background spectrum measured over the Run 5 has also a peculiarity: a comparatively wide distribution in the energy interval $\approx 0.6 - 1.1$ MeV. Taking into account the α/β ratio.² this peak is mainly due to the radioactive contamination of the crystal ZWO-4 by α active nuclides of ²³²Th. ²³⁵U and ²³⁸U families: this statement will further be proved by the pulse-shape discrimination in Section 3.2.2. The background counting rates of the ZnWO₄ detectors in the energy intervals 0.2–0.4, 0.8–1.0, and 2.0-2.9 MeV are given in Table 2.

3.2. Data analysis

The time–amplitude analysis, the pulse–shape discrimination between $\beta(\gamma)$ and α particles, the pulse–shape analysis of the double pulses, and the Monte Carlo simulation of the measured energy distributions have been applied to estimate the radioactive contamination of the ZnWO₄ crystals.

3.2.1. Time-amplitude analysis

The technique of the time-amplitude analysis is described in details in Refs. [23,24]. The arrival time and energy of each event have been used for the selection of the following fast decay chain in the ²³²Th family: ²²⁰Rn (Q_{α} = 6.41 MeV, $T_{1/2}$ = 55.6 s) \rightarrow ²¹⁶Po (Q_{α} = 6.91 MeV, $T_{1/2}$ = 0.145 s) \rightarrow ²¹²Pb. All events within 0.5–1.75 MeV have been used as triggers, while a time interval 0.026-1.45 s (88.2% of ²¹⁶Po decays) and the same energy window have been set for the second events. Sixty events of the fast chain 224 Ra $\rightarrow ^{220}$ Rn $\rightarrow ^{216}$ Po $\rightarrow ^{212}$ Pb were found in the data of Run 5. Taking into account the efficiency of the events selection in the time interval, one can calculate the activities of ²²⁸Th in the ZnWO₄ crystal ZWO-4 as $18(2) \mu$ Bg/kg. The search for the fast decay chain from the ²²⁷Ac (²³⁵U) family has also been performed in a similar way. Twelve events 219 Rn (Q_{γ} = 6.95 MeV, $T_{1/2}=3.96 \text{ s}) \rightarrow^{215} \text{Po} \quad (Q_{\alpha}=7.53 \text{ MeV}, T_{1/2}=1.78 \text{ ms}) \rightarrow^{211} \text{Pb} \text{ have}$ been selected from the data of Run 5. Thus, the activity of ²²⁷Ac in the crystal ZWO-4 has been calculated as $11(3) \mu$ Bq/kg. The activities of ²²⁸Th and ²²⁷Ac in the ZnWO₄ crystal scintillators obtained by the time-amplitude analysis are presented in Table 3.

3.2.2. Pulse-shape discrimination (PSD) between $\beta(\gamma)$ and α particles

As demonstrated in Ref. [5], the dependence of the pulse shapes on the type of irradiation in the ZnWO₄ scintillator allows one to discriminate $\gamma(\beta)$ events from those induced by α particles. The optimal filter method proposed by E. Gatti and F. De Martini in 1962 [25] has been applied for this purpose.

For each signal f(t), the numerical characteristic of its shape (shape indicator, *SI*) is defined as: $SI = \sum_k f(t_k)P(t_k)/\sum_k f(t_k)$, where the sum is over the time channels k, starting from the origin of signal and up to 50 µs, and $f(t_k)$ is the digitized amplitude (at the time t_k) of a given signal. The weight function P(t) is defined as: $P(t) = \{\overline{f_{\alpha}}(t) - \overline{f_{\gamma}}(t)\}/\{\overline{f_{\alpha}}(t) + \overline{f_{\gamma}}(t)\}$, where $\overline{f_{\alpha}}(t)$ and $\overline{f_{\gamma}}(t)$ are the reference pulse shapes for α particles and γ quanta, respectively.

² The relative light yield for α particles as compared with that for γ quanta (β particles) can be expressed through α/β ratio, defined as ratio of α peak position in the energy scale measured with γ sources to the real energy of α particles (E_{α}). Because γ quanta interact with detector by β particles, we use more convenient term " α/β ratio". The α/β ratio for ZnWO₄ scintillator was taken from Ref. [5].

Download English Version:

https://daneshyari.com/en/article/1826683

Download Persian Version:

https://daneshyari.com/article/1826683

Daneshyari.com