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We report here a quantitative analysis of the effect of partial coherence on grating-based phase-contrast

X-ray imaging. The self-image intensity has been derived through the phase-space formulation in the

framework of the Wigner distribution. Based on the behavior of the self-image visibility, the minimum

required spatial coherence length is given for three different types of gratings. Furthermore, we show

that the coherence requirement, at different fractional Talbot distances, increases linearly with the

Talbot order for the three types of gratings. The approach we presented can also be successfully applied

to the Talbot–Lau geometry.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The sensitivity of conventional hard X-ray imaging is often not
sufficient to perform detailed internal observations of samples
consisting of low-Z elements because of the weak absorption.
Phase-contrast X-ray imaging, which uses the phase shift as
image contrast, provides a way of performing detailed observa-
tions of samples with an improved sensitivity [1–3]. Several hard
X-ray phase-contrast imaging methods have been developed
since the 1990s. They can be categorized into interferometric
imaging [4,5], propagation-based imaging [6,7], analyzer-based
imaging [8–11] (also called diffraction enhanced imaging) and
grating-based differential phase-contrast imaging (DPC) [12–17].
Among them, DPC with hard X-rays offers great advantages over
existing X-ray phase-contrast methods: firstly, the potential to
realize fields of viewing large and, secondly, the possibility to
efficiently use curved wavefronts and polychromatic sources of
low-brilliance [14,17]. When combined with a tomographic scan,
it makes possible the three-dimensional reconstruction of the
distribution of X-ray refractive index of the sample, as well as
the distribution of absorption coefficient commonly obtained in
the absorption-based tomography methods [16].

Weitkamp et al. [13] have discussed the minimum required
transverse coherence length in the case of p phase modulation.
Based on the behavior of visibilities of the self-image, Momose

et al. [15] have presented the corresponding results in the case of
p/2 phase modulation. Nesterets and Wilkins [18] also presented
simulation results on the effect of source size in a scanning-
double-grating configuration. However, no quantitative analysis
of partial coherence in DPCI has been reported yet, and in this
communication we present our results for three different types of
gratings. The work is based on the expression for the self-image
intensity under partially coherent illumination, which has been
derived through phase-space formulation using the Wigner
distribution [19,20]. We show that the partial coherence effects
of incident X-ray wave on the self-image can be simply accounted
for as a multiplication factor. In this article, we particularly
discuss the minimum required spatial coherence length for
efficient operation of DPC with three different types of gratings.
For different fractional Talbot distances, the coherence require-
ment is almost proportional to the Talbot order. The analysis is
also valid for the Talbot–Lau geometry.

2. Methods

As schematically shown in Fig. 1, the essential DPC setup
consists of the first grating G1, the second absorption grating G2
and an image detector [15]. The distance between the gratings is
set to be one of the fractional Talbot distances of G1, denoted by
Dm, so that the fractional Talbot effect by G1 occurs at the position
of G2; i.e., a self-image with a period corresponding to the pitch of
G1 is formed on G2. When a sample is placed immediately in front
of the grating G1, the self-image is deformed owing to the
refraction at the sample. The analyzer absorption grating G2
transforms the deformation into intensity variation recorded by
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the image detector. Here, the X-ray optical axis is parallel to the z

axis, and the line pattern of the gratings is parallel to the y axis.
Under partially coherent illumination with a normalized

unitary intensity, the intensity of the self-image formed by the
grating G1 has the following form:

Iðx2;DmÞ ¼
X

n

cnmin

lDmn

Md=Z

� �
exp 2pi

nx2
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where l is the X-ray wavelength, cn the Fourier coefficient
determined by the grating G1, M=(R+Dm)/R the magnification
factor, and R the curvature radius of the incident X-ray wave.

As illustrated in Fig. 1, the fractional Talbot distances, i.e., the
positions along the optical axis at which the self-image pattern
exhibits a maximum modulation, are, for an incident spherical
wave [21],

Dm ¼
Rmd2

2Z2lR�md2
ðm¼ 1;2;3; . . .Þ ð2Þ

where d is the period of the first grating G1. The integer number
m, called the Talbot order, is odd for a phase grating and even for
an amplitude grating. The factor Z, depending on the optical
properties of the grating G1, satisfies

Z¼
1 if G1 is a p=2 phase grating or an amplitude grating

2 if G1 is a p phase grating

(

ð3Þ

For partially coherent illumination, let us consider the general-
ized Gaussian-Schell-model sources [20], for which the complex
degree of coherence of the incident X-rays min(lDmn/Md/Z) is
given by the van Cittert-Zernike theorem as [22]
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where L denotes the spatial coherence length, which is defined
by [15]

L¼
lR

2psx
ð5Þ

where sx denotes the RMS of the intensity distribution in the
source plane. Substituting Eq. (5) into Eq. (1), we obtain
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As can be seen from Eq. (6), it is the ratio md/ZL that
determines the partial coherence effects on the self-image.
Based on Eq. (6), we can conclude that the minimum required
spatial coherence lengths for efficient operation of DPC

with different types of gratings are different, and that the
coherence requirement at different distances is related to the
Talbot order m. In the next section, numerical simulations will
help us to clearly demonstrate the influence of partial coherence
on DPC.

3. Numerical results

The visibility of the self-image is the most important figure of
merit for the efficiency of DPC, which is defined as V�(Imax� Imin)/
(Imax+ Imin) with Imax and Imin being correspondingly the max-
imum and minimum intensity values in the self-image. In this
section, we discuss the coherence requirements for different types
of gratings to obtain the self-image with a high visibility. The
following numerical simulations have been carried out to provide
a quantitative insight into the problem of the effect of partial
coherent illumination on the self-image visibility. The period d of
the first grating is 4mm. The corresponding fractional Talbot
distance can be calculated using Eq. (2).

The visibilities of the self-images for different types of gratings
at their various fractional Talbot distances plotted as a function of
L/d are shown in Fig. 2. As shown in Fig. 2(a), for a p phase grating,
a self-image with a visibility of greater than 0.7 is produced when
the spatial coherence length is larger than one-fourth of the
grating period. It is noteworthy that even when L/d=0.2, a
visibility of �0.6 is obtained. Experiments have demonstrated
that a visibility greater than 0.2 is sufficient for phase imaging
provided the pattern of the grating G2 is sufficiently thick [23].
Taking the noise in experimental applications into account, here
we choose the visibility of 0.6 as a criterion for further analysis of
the coherence requirements. According to the criterion, the
coherence requirements for three types of gratings at different
Talbot orders are summarized in Table 1 below.

The following two practically important trends can be
established by analysis of Fig. 2 and the data in Table 1. First,
the minimum required coherence length is different for different
types of gratings. For the p phase grating, the requirement is one-
fifth of the grating period. The corresponding results are two-
fifths for the p/2 phase grating, and four-fifths for the amplitude
grating. The various requirements can be attributed to the
differences in the minimum fractional Talbot distance, which
results in different spatial separations of the interference beams.
In the case of a p phase grating, the self-image is mainly a
constructive interference between the +1st and �1st orders. The
two beams are spatially separated by 2lDm/d=md/4, in the case of
the first fractional Talbot distance one-fourth of the grating

Fig. 1. Schematic representation of grating-based phase-contrast imaging setup. G1 is a phase grating or an amplitude grating while G2 must be an absorption grating.

Both gratings have a duty cycle of 0.5.
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