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a b s t r a c t

Three-dimensional beam dynamics in a space-charge-dominated regime during a longitudinal pulse

compression is investigated numerically using a multi-particle code developed. Results are compared

with those of a two-dimensional particle simulation including a longitudinal current increase model.

The rms transverse emittance additionally increases along the drift distance due to the longitudinal

motion of the beam particles. The three-dimensional beam behavior can be also compared with a

longitudinal one-dimensional calculation under a condition of a constant geometry factor for the

transverse direction. Results indicate that the longitudinal beam dynamics are not affected by the

transverse motions in the parameter regime.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Heavy ion inertial fusion (HIF), ion-beam-driven warm dense
matter (WDM) and high energy density physics (HEDP) require
the generation of a high-current heavy ion beam (HIB) [1–4]. The
intense HIB is in the space-charge-dominated state, and the beam
parameters are far from those of conventional particle accel-
erators. Therefore, the beam dynamics and its control in the
space-charge-dominated regime are important research issues in
these fields.

At the final stage of the driver, the beam pulse must be
longitudinally compressed into the range of 10–100 ns. We should
transport and compress the bunch of HIB with a small emittance
growth. For this reason, the final pulse compression and the final
focusing are key technologies in the driver systems.

Recently, a neutralized pulse compression scheme was pro-
posed, and was experimentally demonstrated [5,6] and also was
theoretically and/or numerically investigated [7–10]. On the other
hand, pulse compression scenarios without the charge and
current neutralization mechanisms were proposed and have been
studied by theoretical and numerical approaches in many years
[11–17].

In our previous studies [18–20], the beam dynamics was
investigated by using a two-dimensional (2D) multi-particle code
including the longitudinal pulse compression model [12,18]. In
this study we carry out numerical simulations by using a three-
dimensional (3D) particle code during the drift compression in the
linear transport line. The longitudinal and transverse beam

parameter changes are discussed by the numerical simulation
results during the pulse compression.

2. Simulation model and beam parameters

We use a two-dimensional calculation code in the transverse
cross-section with the current increase model for the longitudinal
bunch compression [12,18], and a three-dimensional one. The
code used for the 3D calculation, which is based on a particle-in-
cell (PIC) method [21], takes into account of a self-electrostatic
and an external applied magnetic fields, and can be described in
3D Cartesian coordinates. The particle motions are calculated in
the fully 3D space with gamma-factor corrections as the effect of a
self-magnetic field [22,23].

2.1. Particle motions

The horizontal, vertical and longitudinal particle positions x, y

and z as a function of time t are obtained by [24,25]

dx

dt
¼

px

mg0

(1)

dy

dt
¼

py

mg0

(2)

dz

dt
¼

pz

mg0

(3)

where px and py are the momentum of the beam particles in the
horizontal and vertical directions, pz is the momentum of the
beam particles in the longitudinal direction, g0 is the relativistic
factor of the beam center, and m is the mass of the beam particles.
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The equations of motion for the beam particles are calculated
by

dpx

dt
¼

qEx

g2
0

�
qpz

mg0

B00x (4)

dpy

dt
¼

qEy

g2
0

�
qpz

mg0

B00y (5)

dpz

dt
¼ qEz (6)

where q is the charge of the beam particles, Ex and Ey are the self-
electric fields in the transverse direction, Ez is in the longitudinal
direction, and the magnetic field gradient B00 is described by

B00 ¼
k2
b0mcbg0

q
(7)

where kb0 is the betatron wavenumber due to the transverse
focusing force, and b is the particle velocity divided by light speed
c.

Using a leapfrog algorithm [21], the above equations for the
particle motion are discretized by

xnþ1 ¼ xn þDt
pnþ1=2

x

mg0

(8)

ynþ1 ¼ yn þDt
pnþ1=2

y

mg0

(9)

znþ1 ¼ zn þDt
pnþ1=2

z

mg0

(10)

and for the momentum changes in the longitudinal direction,

pnþ1=2
z ¼ pn�1=2

z þ qDtEn
z (11)

and for the transverse momentum,

pnþ1=2
x ¼ pn�1=2

x þ qDt
En

x

g2
0

�
B00

mg0

pn
z xn

 !
(12)

pnþ1=2
y ¼ pn�1=2

y þ qDt
En

y

g2
0

�
B00

mg0

pn
z yn

 !
(13)

where n indicates the time step. The longitudinal momentum at n

time step can be averaged as pn
z ¼ ðp

nþ1=2
z þ pn�1=2

z Þ=2:

2.2. Field solver

According to the Poisson equation, the space-charge-induced
electric field is calculated by

r2f ¼
@2f
@x2
þ
@2f
@y2
þ
@2f
@z2
¼ �

r
�0

(14)

where f is the electrostatic potential, r is the charge density, and
�0 is the permittivity of free space. By solving Eq. (14), the electric
field can be completely determined by ~E ¼ �~rf, however, in case
of a direct 3D scheme, the higher computational cost is
unaffordable for a lot of parameter studies.

Vorobiev and York proposed a sub-3D PIC method [26], and the
approach is as follows. In their approach, the 3D Poisson equation
(14) is replaced as

@2f
@x2
þ
@2f
@y2
¼ � ~r (15)

where

~r ¼ r
�0
�
@Ez

@z
. (16)

If Eq. (16) can be solved including the transverse information, we
can obtain the transverse electric field by solving the 2D Poisson
equation as shown in Eq. (15).

Assuming the large aspect ratio to longitudinal and transverse
directions for the beam bunch, we employ a simplified model for
the longitudinal electric field in this study. The transverse electric
fields are normally calculated by

Ex ¼ �
@f
@x

(17)

Ey ¼ �
@f
@y

(18)

while by assuming the long wave approximation the longitudinal
electric field can be given as [25]

Ez ¼ �
g

4p�0g2
0

dl
dz

(19)

where l is the line charge density. For a space-charge-dominated
regime, g is the geometry factor defined by [25]

g ¼ log
r2

p

rxry
(20)

where rp is the outer boundary pipe radius, rx and ry are effective
beam radii estimated as

rx ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� hxiÞ2i

q
(21)

ry ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðy� hyiÞ2i

q
. (22)

To reduce the computational cost and to calculate the transverse
and longitudinal electric fields, the beam bunch is longitudinally
sliced and separated as shown in Fig. 1. At each time-step the
bunches sliced are identified by using the index b. The transverse
electric fields are calculated at each slice. For this reason, the
horizontal and vertical electric fields are rewritten as

Exb ¼ �
@fb

@x
(23)

Eyb ¼ �
@fb

@y
(24)

at each slice. Here the subscript b indicates the sliced bunch index.
Using Eqs. (15) and (16), the electrostatic potential at each slice
can be calculated by

@2fb

@x2
þ
@2fb

@y2
¼ � ~rb (25)

where

~rb ¼
rb

�0
�

dEzb

dz
. (26)

Here

dEzb

dz
¼ �

1

4p�0g2
0

d

dz
gb

dlb

dz

� �
. (27)

The 2D Poisson equation at each slice can be numerically solved
by using a multigrid and SOR methods [27].

ARTICLE IN PRESS

z

bb-11 b+1

Fig. 1. Sliced bunch model for the self-electric field calculations.
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