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a b s t r a c t

It is known that useful information about the spectral distribution of an X-ray beam can be extracted by

measuring and analyzing its transmission curve. This kind of approach to the characterization of the

distribution in energy of photons is justified when the direct measurements of the energy of a single

photon becomes too expensive or cannot just be performed. Thomson Scattering sources can produce

up to 108 photons within a pulse 10 ps long. Hence the rate of incidence of photons is too high to apply

traditional X-ray spectroscopy methods while methods based on the transmission curve can still be

used.

In order to propose an application of these techniques in the characterization of a Thomson

Scattering source we studied an iterative statistical algorithm (Expectation-Maximization) used as a

regularization method on simulated measurement computed starting from a calculated energy

distribution with peak energy of 20 keV. Results show that this method can give good approximations in

the low energy range (approximately 20 keV) and that it is at least sensible to a small amount of

radiation in the higher part of the energy range (approximately 70 keV). The robustness of the method

against non-ideal experimental conditions is also considered.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Thomson Back Scattering sources can be bright X-ray sources
that typically produce photons in a pulsed modality, this because
laser light and electrons are bunched before the collision. There
are some working Thomson Back Scattering sources (also called
Inverse Compton Scattering, depending upon electron and
produced photon energies), for example at BNL (Brookhaven
National Laboratories) [1] and University of Tokyo [2], while some
other are under construction, for example at Daresbury [3] or at
LNF (National Laboratories of Frascati) [4,5].

For the Thomson Back Scattering source at LNF are expected
109 photons per second, bunched in 10 ps long pulses at a
repetition rate of 10 Hz with 8 mrad of divergence [6]. In this
condition the rate of fluence (photon per second per square
millimeter) is too high to perform a standard spectrometric
measurement based on single photon energy measurement.

Anyway, the knowledge of the spectrum of an X-ray source is a
key point for the development of any kind of application, for
example in imaging both contrast and absorbed dose strongly

depend upon energy. Moreover, the energy distribution of the
emitted photons is the final probe to check if the machine is
correctly working. An alternative way to measure the spectrum of
an X-ray source might be of interest in the experimental
characterization of this kind of sources, and a method that
requests the measurements to be integral-type will not be
affected by the high rate of incidence of photons.

The analysis of attenuation data (transmission curves), for
example exposure or dose measurement with an ionization
chamber, can provide some information about the spectral
distribution of an X-ray source and, as not affected by the rate
of incidence of photons, is a good candidate for the characteriza-
tion of a Thomson Back Scattering X-ray source.

2. Materials and methods

The exposure Exp is related to the spectrum of an X-ray beam
in the following way [7]:

Exp ¼ k

Z 1
0

FEðEÞmtrE dE (1)

where FEðEÞ represent the spectral distribution of the photons, mtr

is the mass transfer coefficient of air and k ¼ ð0:00873Þ�1 J�1 kg R
is the constant to convert the kerma in air to exposure [8]. With an
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ionization chamber it is possible to measure the exposure as a
function of the thickness t of a well characterized material (for
example Aluminium) used to filter the beam. For a perfectly
collimated X-ray beam, the exposure is related to the thickness t

of the absorber by the relation

ExpðtÞ ¼ k

Z 1
0

FEðEÞe
�mðEÞtZðEÞdE (2)

where ZðEÞ ¼ mtrðEÞE, which is considered a known function of
energy, and mðEÞ is the total attenuation coefficient of the
attenuator in which are included both photoelectric and Compton
effects. Each scattered photon is considered removed from the
beam, as well as the photons absorbed by photoelectric effect.

In general, there is no analytical expression for the distribution
of photons as function of energy, one choice could be to discretize
the integral Eq. (2) and treat the problem from its numerical point
of view; it turns out a linear system of the form

T ¼ AX. (3)

Now T 2 RM represent the attenuation curve (simulated exposure
measurements as a function of the thicknesses of the attenuator)
and X 2 RN is the discretized spectrum. Both these functions are
represented by vectors and A 2 RM�N is a matrix which contains
the properties of the attenuators. Matrix elements are defined as
Amn ¼ e�mntm where mn is the total attenuation coefficient of the
attenuator computed at the energy corresponding to the n-th
energy bin of the spectrum and tm is the thickness of the
attenuator related to the m-th transmission measurement
(m ¼ 1 . . .M and n ¼ 1 . . .N). The vector X can be regarded as
the point-by-point product of S and Z which represent, respec-
tively, the discretization of FE and Z (Eq. (2)). Once X is computed
it is possible to correct for the coefficients contained in Z and a
spectrum in terms of number of photons per energy bin is
obtained. Through this paper, which deals with a simulation
study, we refer to the vector T as the (simulated) measurements
considered as composed by an exact term T0 and a random
perturbation e representing the noise inherent in the measure
process

T ¼ T0
þ e (4)

in our case e is artificially added to T0 in order to simulate a real
experimental situation. This separation between the exact term T0

and its inherent noise e is an idealization for clearness purposes:
strictly speaking, when dealing with an ill-posed problem, even
the roundoff error due to discretization in the computer acts like a
critical noise contribution. In this sense the two terms are never
separable one to each other.

The compactness of the linear operator described by Eq. (2)
translates, after the discretization, into an ill-conditioning of the
linear system in Eq. (3). This means that some regularization
technique must be used to obtain a solution of the system
X ¼ AinvT which contains some useful information. We use
Expectation-Maximization (also known as Richardson–Lucy)
algorithm to obtain an approximation to the exact solution of
the system of Eq. (3) from the measurements vector T, a
description of this algorithm can be found in Appendix A.

We consider a calculated spectrum for a Thomson Back
Scattering source (solid line in Fig. 2, the plots refer to a single
pulse spectrum) [6]; starting from this distribution we compute
the exact attenuation curve with Eq. (3) (Fig. 1). In [6] the
spectrum is computed with an analytic code in the energy range
10–65 keV and the spectrum is discretized using 0.5 keV energy
bins. The attenuator is Aluminium and the thicknesses are
between 0 and 1.6 cm (the system matrix is 139� 139). The
attenuation coefficient are computed on the basis of the method
proposed in [9]. Once the exact curve is computed the noise is

added. We consider three different levels of this perturbation,
extracted from a random Normal distribution with sigma,
respectively, 10�3, 5� 10�3 and 10�2 times the value of the
exposure measurement. These values are chosen considering
reasonable numbers for a real experiment. The Expectation-
Maximization algorithm is then applied to the perturbed curves,
since it is iterative we have to choose the input distribution and
we need a stopping rule.

As there are no simple constraints to impose on the spectral
distribution of Thomson Back Scattering sources we use a flat
distribution as the input spectrum. The total area is set to be
comparable with the first attenuation measurement (no filtration)
and then the value of each bin can be easily computed, in other
words, the first point of the attenuation curve is the total number
of photons weighted with ZðEÞ, the area under the flat distribu-
tion is set to be comparable to this number.

To find the number of iterations to be performed we use the
Discrepancy Principle [10,11]; the basic idea is to consider that we
cannot expect that the transmission curve, computed using an
approximation to the spectrum extracted from the measurements,
is closer to the exact transmission curve than the measured one.
Consider the quantity

rðkÞ ¼ kT � AXk
k2 (5)

that we call residual and which is function of number of iterations
k; T is the vector representing the measurements and Xk is the
approximation obtained as the output of the k-th cycle of the
algorithm. The symbol k � k2 represent the Euclidean norm, i.e.

kTk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
iT

2
i

q
. Since we are interested in the distance between

the measured attenuation curve T and the one computed using

the k-th reconstructed spectra, the Euclidean norm (also called L2

norm) is suitable as a quantification of this feature. This distance

is the mean square error we commit if we take the AXk as an
approximation of T [12]. Recall Eq. (4), we can define the

threshold d ¼ kek2. Now the Discrepancy Principle states that

the iteration has to be stopped when the condition rðkÞ � d is
verified.
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Fig. 1. Transmission curve computed for the reference 20 keV Thomson Back

Scattering source spectrum (Fig. 2) using Aluminium as attenuator and an

ionization chamber as detector. The beam is filtered with different thicknesses of

Al ranging between 0 and 1.6 cm; the values of the exposure are normalized such

that the exposure associated with the unfiltered beam is 1.
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