

www.elsevier.com/locate/elecom

electrochemistry communications

Electrochemistry Communications 8 (2006) 336-340

Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO₂ film photoanode and O₂-reducing cathode

Masao Kaneko *, Junichi Nemoto, Hirohito Ueno, Norihiko Gokan, Keita Ohnuki, Mizuki Horikawa, Rie Saito, Toshiyuki Shibata

Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan

Received 9 November 2005; received in revised form 26 November 2005; accepted 9 December 2005 Available online 18 January 2006

Abstract

Photoelectrochemical decomposition of many biomass and related compounds with a nanoporous TiO₂ film photoanode and an O₂-reducing cathode was successfully achieved to generate photocurrents. As long as the compound is either liquid or soluble (or solubilized) in water, it was able to be photodecomposed including even polymeric compound to produce electricity. Not only biomass (such as polysaccharides, proteins, cellulose, lignin, etc.) and bio-related materials (methanol, ethanol, glucose, amino acids, ammonia, urea, etc.), but also other electron-donating compounds, even synthetic polymers, could be photodecomposed generating electricity. The compounds underwent almost complete mineralization, i.e., they decomposed almost completely to produce either CO₂ from carbon compounds or dinitrogen (N₂) from nitrogen compounds such as ammonia. It was estimated that about 78% energy of the compound is converted to electrical energy in a maximum case. A photofuel cell (PFC) was proposed and thus proved that can use varieties of biomass and biorelated compounds including other organic compounds as a direct fuel to generate electricity by using photocatalytic oxidation at a nanoporous TiO₂ film photoanode and an O₂-reducing cathode.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Nanoporous titanium dioxide film; Biomass; Bio-related compounds; Photofuel cell; Organic compounds

1. Introduction

Photoelectrochemical reactions at semiconductor electrodes was investigated from 1960s [1], and the famous work on a crystalline n-TiO₂ photoanode to photodecompose water by UV light evoked great attention in the related area [2]. Some organic compounds have also been photodecomposed by using crystalline TiO₂ photoanodes [3,4]. For these crystalline n-TiO₂ photoanode the semiconductor forms a kind of Schottky junction (called a liquid junction) at the TiO₂/aqueous electrolyte interface, the photogenerated holes oxidize water or organic compound on the TiO₂ surface, and the photogenerated electrons

reduce protons to produce H_2 at a counter electrode (often Pt). In the beginning of 1990's, a nanoporous TiO_2 thin film was successfully applied to fabricate a dye-sensitized solar cell (DSSC) [5], and the cell is now investigated in many countries towards commercialization. In this DSSC, the TiO_2 film works as an electron acceptor for the photoexcited dye compound and at the same time as an electron-conducting material, rather than working as a liquid junction device. The photoreactivity of a nanoporous TiO_2 film itself besides the dye-sensitized system is an interesting and important issue towards future applications, but this subject is open to further investigation.

Biomass and bio-related compounds are attracting a great deal of attention to use as a renewable energy resource for reducing carbon dioxide (CO₂) emission, but their energy conversion into practical energy requires still elegant design

^{*} Corresponding author. Tel./fax: +81 29 228 8374. E-mail address: mkaneko@mx.ibaraki.ac.jp (M. Kaneko).

and investigations. As one of the candidates for such energy conversion, the present authors are interested in direct photoelectrochemical energy conversion of biomass and biorelated compounds into electrical energy by utilizing its oxidation by O_2 which is an exo-energetic process. For this purpose, it is important not only to photodecompose the compounds at a semiconductor photoanode surface, but also to reduce O_2 at a counter cathode electrode to generate electricity instead of reducing protons into H_2 there.

In the present communication, it will be reported that many biomass and bio-related compounds including polymeric compounds such as polysaccharides, proteins, cellulose, lignin, saccharides, amino acids, alcohols, ammonia, urea, etc. can be decomposed photoelectrochemically to generate electricity by using a simple system composed of nanoporous TiO₂ film photoanode and an O₂-reducing cathode as long as the compounds are either liquid or prepared as an aqueous solution. Such a photoelectrochemical cell generating photocurrents could be called a photofuel cell (PFC) whose characteristics for these compounds will also be reported.

2. Experimental

2.1. Materials

A nanoporous TiO₂ film was prepared as follows. 12 g TiO₂ (P-25, received from Japan Aerosil Co. Ltd.) and acetylacetone (0.4 ml) were mixed well in a mortar while adding 4 ml water slowly during 2 h. Triton X-100 (0.2 ml) detergent was added and further mixed well with the TiO₂ slurry, and then the mixture was sonicated. This mixture was spin-coated (2000 rpm) on a FTO (fluorine-doped conducting glass) electrode (2 cm \times 1 cm) for about 10 s to obtain 1 cm \times 1 cm area of a nanoporous TiO₂ film, and the film was dried at 100 °C for 30 min. This procedure was repeated until the film thickness becomes 10 μ m, and then the film was calcinated at 450 °C for 30 min.

2.2. Measurements

As an example ammonia was used as the compound photodecomposed by a nanoporous TiO₂ film photoanode. Cyclic voltammogram (CV) was measured as follows. The TiO_2 film electrode (1 cm × 1 cm), a Pt-black coated Pt plate cathode (1 cm \times 1 cm), and a Ag-AgCl reference electrode were soaked in a 5 ml of 10 M NH₃ aqueous solution (pH 12) in a 10 ml cylindrical cell containing also 0.1 M Na₂SO₄ electrolyte. O₂ gas was bubbled into the water for 30 min to substitute the air with O₂. The TiO₂ film was irradiated with a 500 W xenon lamp through an IRcutoff filter (IRA-25S) (light intensity 503 mW cm⁻²). The gases (N2, H2 and O2) evolved were analyzed by a gas chromatograph (Shimadzu, GC2014) with a 5A molecular sieve column at 40 °C using argon carrier gas. CO₂ was analyzed with a silica gel column. All the photoelectrochemical reactions were performed at 25 °C.

The I-V characteristics of the photofuel cell (PFC) were measured by a two electrodes system, i.e., with a nanoporous TiO_2 photoanode and a Pt plate cathode soaked in an aqueous solution of the fuel compound at 25 °C.

3. Results and discussion

A direct ammonia fuel cell is now attracting attention to use as a mediator for a fuel cell, but the currents produced by a direct ammonia fuel cell (under room temperature) have been in a low level of around 30 $\mu A~cm^{-2}$ [6a]. Recently, high current density was achieved by a direct ammonia fuel cell using ammonia gas and proton conducting BaCeO $_3$ solid electrolyte doped with gadolinium and praseodymium, but under high temperature (700 °C). It will at first be shown that an ammonia (NH $_3$) aqueous solution can be photodecomposed under room temperature by the nanoporous TiO $_2$ film photoanode in combination with an O $_2$ -reducing Pt cathode to generate electricity.

The cyclic voltammogram (CV) at a fluorine-doped conducting glass electrode (FTO)/nanoporous TiO_2 film photoanode in a 10 M NH_3 aqueous solution (pH 12) in the dark and under irradiation under 1 atm O_2 atmosphere at 25 °C are shown in Fig. 1(a). Although the CV curves both under dark and illumination changed gradually with time, they tended to reach a constant value, and the CV under illumination exhibited clear photoanodic currents. The CV curves showed some hysteresis, i.e., the magnitude of the photocurrents in the anodic and cathodic scans are different, which could be ascribed to some slow step among the photoelectrochemical processes probably due to a multi-electron nature either of the decomposition of ammonia to N_2 (Eq. (1)) or O_2 reduction.

$$2NH_3 \to N_2 + 6H^+ + 6e^- \tag{1}$$

The characteristics of an ammonia direct PFC (APFC) with this FTO/TiO₂ photoanode and Pt-black/Pt cathode under 1 atm O₂ atmosphere is shown in Fig. 1(b), giving under the present non-optimized cell conditions open circuit photovoltage (Voc) 0.84 V, short circuit photocurrent density (J_{sc}) 0.53 mA cm⁻², fill factor (FF) 0.63, where FF is the ratio of a real maximum electric power output per theoretical maximum power output (= $V_{ox} \times J_{sc}$) estimated from the J-V curve (Fig. 1(b)) under irradiation. Under the present non-optimized conditions, the incident photon-to-current conversion efficiency (IPCE) of the APFC (Fig. 1(b)) was 19% based on the incident monochromatic light at 340 nm (intensity, 1.47 mW cm⁻²). It should be noted here that the characteristics of the N₂/H₂ producing system reported earlier by our group [7] as a photoelectrochemical cell operated under Ar atmosphere was very poor as a photocell in comparison to the present PFC operated under O₂ atmosphere since the theoretical maximum cell voltage is only 0.06 V for the N₂/H₂ producing system calculated based on the conduction band edge $(E_{\rm CB})$ of the TiO₂ (-0.77 V vs. SHE at pH 12, as estimated

Download English Version:

https://daneshyari.com/en/article/182786

Download Persian Version:

https://daneshyari.com/article/182786

<u>Daneshyari.com</u>