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a b s t r a c t

We solve the electric charge transport equations in the recombination and saturation regimes using an

iterative perturbation method. We then calculate the charge collection efficiencies of ionization

chambers. The formulae obtained are presented in the form of series for which we calculate the first

coefficients. Our approach allows to account for the spatial as well as the temporal variations of the

primary charge density N(r,t) in the calculations. Finally, we apply our method to study different density

patterns, N, including the textbook case N ¼ N0d(t) and the charge clusters and columns.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In a preceding article [1], we studied ionization chambers
operated in current mode, in order to calculate the shapes of their
saturation curves and evaluate the densities of charge carriers in
their filling gases/liquids. We observed that the behaviour of this
class of detectors is governed by a system of basic but non-linear
equations (see for instance Refs. [2–5]). We noted that, in the
specific case where the space charge perturbations are neglected
and the primary charge density induced by the ionizing particles
is considered uniform, this system possesses an analytical
solution. However, we noted also that this is in fact an exception,
and the complete resolution of the problem still appeared out of
reach. Consequently, ionization chamber operators had to resort
to approximate or numeric solutions to optimize their detectors’
characteristics and analyse their data.

To overcome this difficulty, we developed a mathematical
method to solve the steady-state charge transport equations by
iterations [1]. This approach allowed us, for the first time, to
account for the spatial variations of the ionizing dose rate in the
calculations. Moreover, we found that this mathematical tool
could help resolve a related but more complex problem, the
prediction of the charge collection efficiency in ionization
detectors functioning in quasi-pulse mode. In this operating
mode, the primary charge density induced by the ionizing
particles in the filling fluid can vary with time as well as with
the spatial coordinates. Time derivatives thus appear in the

equations, complicating their resolution even more. As a result, a
number of authors investigated a common sub-case, where the
ionizing dose was considered instantaneous and uniform (see
Refs. [6–8] for instance). In this framework, our predecessors
obtained useful analytical formulae, among which we can quote
the reference result of Boag for parallel plane chambers [6]:

Q

Q0
¼

lnð1þ xÞ
x

; x ¼
kN0d

ðme þ maÞE
(1.1)

where Q/Q0 is the fraction of charge carriers that escaped
recombination and reached the electrodes; N0 is the initial
density of electron–ion pairs created inside the filling gas/liquid;
me and ma are the electronic and ionic mobilities, E the electric
field generated between the electrodes, k the recombination
coefficient and d the inter-electrode spacing. For more general
primary charge densities (non-uniform and non-instantaneous),
however, no analytical results for the Q/Q0 ratio are available in
the literature to our knowledge.

To address this problem, we extend our perturbation method
to the quasi-pulse operating mode, with, as our objective, a
general solution of the ionization detectors’ modelling equations
in the recombination and saturation regimes. In the absence of
space charges and attachment reactions of electrons over
impurities or neutral atoms, these equations write:

@ne
@t � me E :r ne ¼ Nðr; tÞ � knena

@na
@t þ ma E :r na ¼ Nðr; tÞ � knena

(
(1.2)

where N is the density of electron–ion pairs created per unit of
time by the incident particles in the detector; ne and na are,
respectively, the electron and ion densities in the filling fluid.
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This system is completed by two boundary conditions: (1.3) the
electronic density ne is zero at the cathode surface, (1.4) the ionic
density na is zero at the anode surface. Note that Eqs. (1.2) can be
used for other charge carriers, such as positive and negative ions.
Note also that, in (1.2) system, we neglect the diffusion processes.
This approximation is valid only when the diffusion speeds of
electric charges are negligible compared to their drift speeds in
the electric field. Thus, for detectors operated at low voltages with
high-density localized charge structures, the results obtained in
this paper should be applied with caution.

A direct resolution of the problem P ¼ {(1.2)+(1.3)+(1.4)} for an
unspecified density N(r,t) seems impossible at first sight. Conse-
quently, in Section 2, we re-examine the operators De and Da

defined in [1] and demonstrate that they can be generalised to
account for the temporal as well as the spatial variations of the
ionizing dose N(r,t) in the calculations. In Section 3, we apply the
resulting formulae to predict the charge collection efficiency of
ionization detectors for several primary charge density patterns,
including the textbook problem N ¼ N0d(t) and the charge cluster
and columns.

2. Presentation of the perturbation method

To solve the problem P ¼ {(1.2)+(1.3)+(1.4)}, we treat the
recombination term knena as a perturbation and rewrite the
(1.2) equations by introducing a perturbation coefficient e:

@ne

@t
� me E :r ne ¼ Nðr; tÞ � �knena

@na

@t
þ ma E :r na ¼ Nðr; tÞ � �knena

8>><
>>: (2.1)

with
ne ¼ Nð0Þe þ �N

ð1Þ
e þ �

2Nð2Þe þ � � � þ �
nNðnÞe þ � � �

na ¼ Nð0Þa þ �N
ð1Þ
a þ �

2Nð2Þa þ � � � þ �
nNðnÞa þ � � �

(
(2.2)

In parallel plane chambers (cf. Fig. 1), the electric field strength
is given by

E ¼
DV

d
ux (2.3)

if we neglect the space charge perturbations and the finite size
effects. d is the inter-electrode gap and DV, the voltage applied at
the electrodes. The (1.3) and (1.4) boundary conditions imply:

neðx ¼ d; y; z; tÞ ¼ naðx ¼ 0; y; z; tÞ ¼ 0; 8ðy; z; tÞ (2.4)

Integrating the (2.1) equations with the (2.4) conditions, we
obtain:

neðx; y; z; tÞ ¼ d
meDV

R d
x0¼x N x0; y; z; t þ x�x0

ve

� �h
��knena x0; y; z; t þ x�x0

ve

� �i
dx0

naðx; y; z; tÞ ¼ d
maDV

R x
x0¼0 N x0; y; z; t � x�x0

va

� �
dx0

h
��knena x0; y; z; t � x�x0

va

� �i
dx0

8>>>>>>>><
>>>>>>>>:

(2.5)

where ve ¼ meE and va ¼ maE are the electronic and ionic drift
speeds. As we did in Ref. [1], we introduce two operators, De and
Da, to simplify the intermediate calculations:

De : f ðx; y; z; tÞ !
R d

x0¼x f x0; y; z; t þ x�x0

ve

� �
dx0

Da : gðx; y; z; tÞ !
R x

x0¼0 g x0; y; z; t � x�x0

va

� �
dx0

8><
>: (2.6)

Using expressions (2.2), (2.5) and developing them as powers of
e, we obtain:

NðnÞe ¼ �
kd

meDV De
Pn�1

u¼0

NðuÞe Nðn�1�uÞ
a

� �

NðnÞa ¼ �
kd

maDV Da
Pn�1

u¼0

NðuÞe Nðn�1�uÞ
a

� �
8>>>><
>>>>:

for nX1 (2.7)

with
Nð0Þe ¼

d
meDV DeðNÞ

Nð0Þa ¼
d

maDV DaðNÞ

8<
: (2.8)

We note that the Ne
(0) and Na

(0) terms are the charge densities
obtained in the absence of recombination reactions. By making
the perturbation coefficient e approach 1 in (2.2), we obtain
the limited developments of the densities, ne and na, as powers of
1/DV:

ne ¼ Nð0Þe þ Nð1Þe þ Nð2Þe þ � � � þ NðnÞe þ � � �

na ¼ Nð0Þa þ Nð1Þa þ Nð2Þa þ � � � þ NðnÞa þ � � �

(
(2.9)

At the orders 1–3, the formulae of the densities, Ne
(n) and Na

(n),
are given in Ref. [1] and recalled in Appendix A.

We are now able to calculate the electric charge, qe, collected
per unit of time at the anode:

qeðtÞ ¼ �eve

ZZ
S

neðx ¼ 0; y; z; tÞdy dz

¼ �eve

Xþ1
n¼0

ZZ
S

N nð Þ
e ðx ¼ 0; y; z; tÞdy dz (2.10)

where S is the anode surface. Using formulae (2.7) and (2.8), we
can calculate the limited development of qe as powers of 1/DV:

qeðtÞ ¼ �e�
Xþ1
n¼0

ð�1Þn
kd2

mema

 !n
gn

DV2n
(2.11)

with gn at first orders

g0 ¼

ZZZ
V

Hðr; tÞdx dy dz

g1 ¼

ZZZ
V

DeðHðr
0; tÞÞDaðHðr

00; tÞÞdx dy dz
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Fig. 1. A schematic view of a parallel plane ionization chamber.
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