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a b s t r a c t

The mass of an elementary particle, produced in a two body decay, can be calculated by knowing the

masses and by measuring the momenta of the decaying particle and of one of the two final state

particles with its angle of scattering. In this note we describe the technical results of a Monte Carlo

simulation code used for the analysis of the behaviour of the upper limit values at 90% confidence level

of the mass of the unknown particle as a function of the experimental uncertainties of the measured

momenta and angle. The results are useful in designing experiments aimed at the determination of the

mass of an unknown light particle.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The determination of the mass m of a particle produced in a
two body decay reaction, when two of the particles are
kinematically and dynamically defined, is a well-known proce-
dure in particle physics [1].

With the present attainable experimental precisions in the
measurements of momentum and angle, the determination is
easy when the mass m is of the order of magnitude of the masses
of the two other participating particles. A single measurement of
the decay gives for the m2, i.e. the square of the unknown mass, a
positive value. Repeated measurements of the decay provide a
statistic of positive m2 values, in general distributed with
Gaussian shape. In this case all the elements of the distribution
reside in the physical region. The value of the unknown mass is
calculated extracting the square root of the mean value of m2.

When the mass of the light particle is one or more orders of
magnitude smaller than those of the two other particles, the
experimental measurement turns out to be a difficult task [2]. The
combined effects of the smallness of the mass and of the
magnitude of the experimental uncertainties of the measured

quantities, sometimes, generate a negative value of m2. As a
consequence, in repeated measurements, the m2 distribution has
values in the non-physical region. In these conditions statistical
procedures allow to estimate only the upper limit value of m, at a
given confidence level [3]. Accurate and precise experimental
measurements of all the kinematic and dynamic parameters of
the decay are required.

When the values of the m2 distribution reside totally in the
non-physical region, no known statistical procedure exists for
utilising the experimental data.

In this paper we report the results of a Monte Carlo simulation
procedure we have performed to study the relevance of the
experimental uncertainties of the measured quantities of the
decay, in the estimation of the unknown mass m. In particular,
the simulation shows, for the first time, the behaviour of the
upper limit, and its factorisation terms, for the mass of an
unknown elementary particle involved in a two body decay, as a
function of the experimental uncertainties. The results extend the
study on the upper limit value of a light particle mass we have
performed measuring the momenta and the angle of scattering of
the unique completely measured pþ ! mþnm decay [4]. The
simulations are performed at the same energy and scattering
angle values. For the first time, starting from completely known
two body decays of elementary particles, i.e. L! pp�,F! KþK�,
Sþ ! pp0, the simulation has been extended down to a
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muon-neutrino mass of 100 eV for the decay pþ ! mþnm. The
results show, within the wide mass range from 500 MeV down to
100 eV, that the behaviour of the mass upper limits follows a
power law as a function of the experimental uncertainties. The
simulation we present will also be used to study the p� !
m�nmðn̄mÞ decays for low and very low pion momentum in the
PAINUC experiment [7]. The decays occur in a 1 atm helium filled
streamer chamber exposed to the JINR phasotron pion beam in
Dubna. This experiment should improve the result obtained with
a complete pme decay chain observed at PS179 at CERN in a p̄Ne20

annihilation event [4].
In Section 2 we describe the two body decay reactions

analysed. Section 3 shows the kinematic relations used. Section
4 reports, briefly, on the statistical estimator of a physical
parameter and on the procedure to calculate its upper limit value.
In Sections 5 and 6 we describe the procedure to construct the
kinematic database for the simulation, and the Monte Carlo code,
respectively. Section 7 contains the results of the simulated
decays, and the discussions of the behaviours of the upper limit
values as function of the experimental uncertainties. Section 8
contains the conclusions.

2. The two body reactions studied

The study has been divided into three parts. In the first, we
have analysed the reactions

F! Kþ þ K� (1)

L! pþ p� (2)

Sþ ! pþ po. (3)

The masses of all the particles are known. The K� mass is about
half of the L. In reactions (2) and (3) the pions have masses one
order of magnitude lower than the heavier ones. The analysis of
the behaviour of the distributions of mK� , mp� and mpo values,
studied as a function of the experimental uncertainties of the
momenta of F, L, Sþ, Kþ and p and of the scattering angle
between them, provides the test of the simulation code and
information on the precisions of the measured physical quantities.

In the second part of the study we have analysed the two body
decay

A! Bþ X (4)

where A, B and X indicate the particles of the decay. The masses of
A and B have been set equal to the mass of L and of proton,
respectively. X is the fictitious third particle. The X mass has
been changed in each simulation. These decays have no counter-
parts in Nature. On the other hand, the energy–momentum
conservation law allows the calculation of the momenta and the
scattering angles of the particles of whichever decay. Likewise,
with the Monte Carlo procedure it is possible to study the
distributions of the kinematic and dynamic parameters of the
corresponding X particle, as a function of the experimental
uncertainties.

Finally, in the third part, we have applied the procedure to
simulate the reaction

pþ ! mþ þ nm (5)

where the masses of pþ and mþ are known [1]. In the simulations
we have taken into account five different values of the muon
neutrino mass. Studying this decay, the very low mass region has
been reached.

3. Two body decay kinematics

A two body decay reaction occurs in a plane [4]. Using the
symbols of reaction (4), the direction of the decaying particle A

makes an angle y with the flight direction of particle B, and an
angle f with the flight direction of particle X. The relativistic
conservation law of the energy and of the longitudinal and
transverse momentum components allows to calculate the square
of the mass of the X particle with the relation

m2
X ¼ ½ðEA � EBÞ

2
� p2

X � ¼ ðEA � EB � pXÞðEA � EB þ pXÞ ¼ m�m�� (6)

where

p2
X ¼ p2

A þ p2
B � 2pApB cosy (7)

is the square of the momentum of the particle X, m� and m�� are
two factors defined by

m� ¼ EA � EB � pX (8)

and

m�� ¼ EA � EB þ pX . (9)

EA, pA, EB and pB are the energy and the momenta of the
particles A and B, respectively. The factor m�� is always greater
than zero. The quantity m2

X has the same sign of the factor m�.
If m� is 40, then m2

X is 40 and the X particle mass is calculated
extracting the square root of (6)

mX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEA � EBÞ

2
� ðp2

A þ p2
B � 2pApB cos yÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�m��
p

. (10)

Eq. (10) shows clearly that mX depends only on the kinematic
quantities of particles A and B.

4. On the estimation of a parameter

The estimation of a parameter is performed by using a given
number of experimental measurements. The estimate is a
function of the data. It consists in determining a single value or
a set of values by which one represents the true value of the
parameter. The characteristics of an estimator are those described
in books on statistical methods [5].

When repeated measurements are performed, sometimes, the
calculated value of the parameter can be negative. If the
parameter is the square of a physical quantity, the negative
value resides in non-physical region. In our case the parameter to
be estimated is m2

X , and is calculated using Eq. (6). If the values are
partially in the non-physical region, a classical statistical method
allows to extract only a limited information on the value of the
parameter.

Let us consider the m2
X parameter. Suppose the statistic is

Gaussian and contains negative values of m2
X , i.e. its distribution

extends itself with a tail in the non-physical region of m2
X . A

classical confidence level p for m2
X can be selected whenever the

corresponding classical confidence limit m2
p;cl is in the physical

region. The square root of m2
p;cl is considered the upper limit of the

parameter mX at p confidence level. The upper p confidence limit
is calculated with the equation

m2
p;cl ¼ m2 þ ZpDm2 (11)

where m2 is the mean of the distribution, Dm2 is its standard
deviation, and Zp takes the values Z68 ¼ 1:0, Z85 ¼ 1:036, Z90 ¼

1:282 Z95 ¼ 1:645 and Z97:5 ¼ 1:960, at 68%, 85%, 90%, 95% and
97:5% confidence level, respectively [6]. The classical confidence
limit satisfies the probability statement

Pðm2om2
p;clÞ ¼ p (12)
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