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a b s t r a c t

In this paper a new parametric method to deal with discrepant experimental results is developed. The

method is based on the fit of a probability density function to the data. This paper also compares the

characteristics of different methods used to deduce recommended values and uncertainties from a

discrepant set of experimental data. The methods are applied to the 137Cs and 90Sr published half-lives

and special emphasis is given to the deduced confidence intervals. The obtained results are analyzed

considering two fundamental properties expected from an experimental result: the probability content

of confidence intervals and the statistical consistency between different recommended values. The

recommended values and uncertainties for the 137Cs and 90Sr half-lives are 10,984 (24) days and 10,523

(70) days, respectively.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

We expect to obtain from a measurement an estimate, x, of a
quantity’s true value, x0, and its uncertainty, sx. Unless otherwise
stated, the true value of the measured quantity, x0, lies within the
interval x7sx with a probability of about 68%:

Pðx0 2 x� sxÞ � 68%. (1)

If the probability function is Gaussian and the uncertainty sx is
known exactly, then the approximation becomes exact. This
fundamental property of x0, x, and sx is used for testing
hypotheses and theories and planning new experiments. An
experimental result and its uncertainty must also satisfy the
fundamental property given by Eq. (1) regardless of whether they
are used in fundamental or applied physics (as nuclear medicine,
environmental protection, safeguards, etc.), or in weighted
averages, or in error propagations. Thus, underestimating or
overestimating the confidence interval sx is equally undesirable;
in the first case we could be rejecting valid theories and
hypotheses; in the second case we may be accepting poor and
unrealistic ones. Also, incorrect decisions could be taken in cases
where a wrong uncertainty is propagated or is used in weighted
averages.

However, often in experimental physics it is very difficult to
deduce a good estimate of a standard deviation due to undetected
or unknown uncertainties. Thus, we often encounter published
data xi7si, i ¼ 1, 2, y, m, which correspond to various

uncorrelated measurements of the same quantity such that

xi � xj

�� ��b ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i þ s
2
j

q
; jai (2)

for several pairs i, j, suggesting that the data are discrepant. In
such cases we should not apply the most common statistical
methods, such as the weighted average; instead we should use
special procedures to deduce a recommended value and its
uncertainty that satisfy Eq. (1).

Many procedures have been proposed to deal with discrepant
data sets. In this paper we will analyze the recommended values
and uncertainties deduced using some of them, and propose a
new method to calculate recommended values and their un-
certainties based on the fit of a probability density function (pdf)
to the published data.

2. Comparing various methods: consistency condition

MacMahon et al. [1] applied various procedures to deduce
recommended values for two typical discrepant sets of data: the
half-lives of 137Cs and 90Sr. The main goal of Ref. [1] was to study
the change of the recommended values as the size of the set of
data grew over time.

In this section we extend the work of Ref. [1] and study the
change of the recommended values and their uncertainties as the
number of data in the data set increases. The published data
considered in this paper, reproduced in Tables 1 and 2, are exactly
the same as those used in Ref. [1] so that both studies can be
compared.

The question is whether such recommended values and their
uncertainties do satisfy the condition given by Eq. (1). To study
this, let us consider xi7si, i ¼ 1, 2, y, m, a (discrepant) set of data
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ordered by publication date tioti+1, and the recommended values
xrec j7srec j also ordered in the same way. That is, the jth
recommended value and its uncertainty were deduced taking
into account the published data i ¼ 1, 2, y, j.

The recommended values xrec j must agree within their quoted
uncertainties, srec j. This is a necessary condition for the
recommended values to obey the fundamental property given
by Eq. (1). To study the agreement between two recommended
values xrec i7srec i and xrec j7srec j we should consider that they are
correlated, since they were deduced using common published
results. If the published data were normally distributed, had the
same standard deviation, and orthodox statistical procedures
were used to deduce the recommended values, then the correla-
tion coefficient between xrec i and xrec j, ioj, is given by rij ¼

ffiffiffiffiffiffi
i=j

p
.

Thus, two recommended values agree when

xrec i � xrec j

�� ���b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

rec i þ s
2
rec j � 2srec isrec j

ffiffiffiffiffiffi
i=j

qr
; ioj (3)

where �b means ‘‘not much larger than’’. Thus, a figure of merit
to measure the agreement between two recommended values
could be

Q2
ij ¼

ðxrec i � xrec jÞ
2

s2
rec i þ s

2
rec j � 2srec isrec j

ffiffiffiffiffiffi
i=j

p (4)

which is a chi square (w2)-like statistic with one degree of freedom
(the expected values of w2 with one degree of freedom is 1).

In what follows, whether some proposed methods developed
to deal with discrepant sets of data satisfy the consistency
condition given by Eq. (3) will be investigated. The recommended
values and their uncertainties for the 137Cs and 90Sr half-lives
taken from Ref. [1] are shown in Figs. 1 and 2, respectively. The
recommended values are displayed in chronological order
obtained from the first m published data indicated on the
abscissas, mX5. (Ref. [1] shows also the results where fewer
data points were used for deducing recommended values.
However, since two parameters are deduced from the published
data, i.e., the recommended value and its uncertainty, the analysis
has been restricted to cases for which at least five published data
points have been included. However, the conclusions given below
would not change had the analysis considered a smaller number
of experimental results.) The procedures used in Ref. [1] to deduce
recommended values and their uncertainties are the ‘‘Limitation
of Relative Statistical Weights (LRSW)’’ [2], the ‘‘Normalized
Residuals (NR)’’ [3], the ‘‘Rajeval method (Rajeval)’’ [4], the
‘‘Median method (Md)’’, with the standard deviation calculated
as recommended in Ref. [5], the ‘‘Bootstrap method (Boot)’’ [6,7],
and the ‘‘Extended Bootstrap method (ExtB)’’ [8]. (Ref. [1] gives a

concise description of these methods.) Figs. (1) and (2) also show
recommended values obtained with the ‘‘Maximum Likelihood
(ML) Method’’, developed in this work and presented in the next
section.

As can be seen from Figs. 1 and 2, the NR and the Rajeval
methods clearly underestimate the uncertainties and do not
satisfy the consistency condition (Eq. (3)). Consequently, the
fundamental property established in Eq. (1) cannot be satisfied by
the recommended values produced by these methods.

The second and the last recommended values given by the ExtB
method both in the case of 137Cs and 90Sr half-lives hardly agree at
all. Their figures of merit given by Eq. (4) are 5.7 and 6.0,
respectively.

The figure of merit obtained when comparing the less
consistent recommended values in the case of the LRSW method
(the second and the last values, respectively, in both cases) are 2.9
and 3.2. These values are not too large compared to the expected
value 1.0; however, they can be an indication that the standard
deviations are underestimated.

The standard deviation of the median, as proposed by Müller
[5], is calculated assuming a Gaussian distribution for the data,
which is not always true in the case of discrepant data. The figure
of merit obtained when comparing the second and the last
recommended half-life values for 90Sr is very large (Q2

¼ 12). Thus
Md possibly underestimates the standard deviation of the
recommended value in some cases.

The recommended values calculated using BM obey the
consistency condition in both the cases of 137Cs and 90Sr half-
lives. Also, when applied to the o(782) full-width, and the K0

S and
the neutron half-lives, the BM gives consistent estimates [7].

3. Fitting a probability density function to a discrepant data set

In this section, we present a new parametric method to deduce
a recommended value and its uncertainty from a discrepant set of
data. The pdf

f ðxÞ ¼ N
1

1þ ðx� x0Þ
2=a0n0

� �ðn0þ1Þ=2
(5)

where N is the normalization factor given by

N ¼
G ðn0 þ 1Þ=2
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0a0p
p

Gðn0=2Þ
(6)

will be fitted to the discrepant sets of data analyzed above. The
parameters to be fitted are the true value of the measured
quantity (x0), a scale parameter related to the data spread (a0), and
a parameter related to the shape of the function (n0). Thus, by
fitting all three parameters to a discrepant set of data we obtain
the recommended value and its uncertainty and also the pdf of the
data.

The function in Eq. (5) is a Student-t-like distribution that has
some interesting properties. When n0p2, the standard deviation
of x diverges, as in the case of a Breit–Wigner or the Lorentzian
(n0 ¼ 1) distributions. (The justification to consider a pdf with an
infinite standard deviation when dealing with experimental data
is given in the Appendix.) When n0 increases, the pdf of Eq. (5)
tends to a Gaussian distribution.

The parameters x0, a0, and n0 were fitted using the Maximum
Likelihood estimation method. This method estimates true values
of the parameters by maximizing the likelihood function, which is
the joint pdf of the experimental observation xi, i ¼ 1, 2, y, m:

Lðx0; a0;n0Þ ¼
Ym
i¼1

f ðxiÞ. (7)
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Table 2
Published 90Sr half-life (days) data from Ref. [1].

10,120 (150) 10,410 (330) 10,588 (91) 10,495 (4)

10,700 (580) 10,636 (88) 10,665 (37) 10,557 (11)

10,230 (150) 10,282 (12) 10,561 (14)

Table 1
Published 137Cs half-life data (and uncertainties), in days, taken from Ref. [1].

9715 (146) 10,665 (110) 11,023 (37) 10,967.8 (4.5)

10,957 (146) 11,220 (47) 11,020.8 (4.1) 10,940.8 (6.9)

11,103 (146) 10,921 (183) 11,034 (29) 11,018.3 (9.5)

10,994 (256) 11,268 (256) 10,906 (33) 10,970 (20)

10,840 (18) 11,191 (157) 11,009 (11)
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