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Magnetic fields are often applied to the target zone of a particle beam to maintain the polarization of
gaseous targets, as with the HERMES experiment. The same field bends the trajectories of charged
particles, however, introducing errors in vertex reconstruction.

This paper describes a method for accurately describing relativistic charged particle transport within
a 3-dimensional (3-D), non-uniform magnetic field. The algorithm is tested on HERMES experimental
data, and is shown to substantially improve the K? resonance in the w*n~ invariant mass spectrum.
Indeed, corrected data taken with target magnet switched on are as good as data taken with magnet
switched off. The method can easily be applied to other experiments given a 3-D magnetic field map of
the target region. The relevant code is provided in an Appendix.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The HERMES experiment (DESY laboratory, Hamburg) uses
27.6 GeV/c electrons or positrons from the HERA accelerator to
study the quark-gluon spin structure of nucleons by deep inelastic
scattering [1,2]. Thanks to the Sokolov-Ternov mechanism [3], the
HERA beam is self-polarized transverse to its momentum. The
beam polarization is rotated to the longitudinal direction at
the HERMES interaction point by two spin rotators. Furnished
with a dual-radiator Ring-Imaging Cherenkov detector (RICH) [4],
the HERMES spectrometer is capable of distinguishing between
pions, kaons and protons as well as characterizing several kinds of
events.

HERMES employed polarized hydrogen and deuterium gas
targets from 1996 to the end of 2005. A storage cell restricts the
polarized atoms to a small volume in the path of the beam. The
HERA beam passes through an open aluminum tube, with two
side tubes for injecting the polarized gas and sampling its
components after the interaction. The gas density inside the cell
is about two orders of magnitude higher than a free jet would
provide. The spin orientation of the target gas is defined by an
external magnetic field. The field was applied parallel to the beam
momentum until the end of 2000, then switched to a transverse
orientation.
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The external magnetic field is very important for two reasons:
it determines the spin orientation of the target gas, and it
effectively decouples the magnetic moments of electrons and
nucleons. The latter is necessary to achieve a high degree of
polarization in the injected gas and prevent spin relaxation.
According to both theoretical and experimental results, the more
intense the external magnetic field, the longer the target
polarization can be sustained [5]. For longitudinal target polariza-
tion, the magnetic field is about 0.35T. For transverse target
polarization, the magnet design is more complex. A strong
magnetic field is required for high polarization, but the intensity
of the field is also limited by the amount of synchrotron radiation
generated by beam deflection (5 kW maximum). After balancing
these constraints, it was decided to use a field of about 0.3 T [5].

In principle, the external magnetic field will deflect all charged
particles—not just the beam itself, but products of deep inelastic
scattering. For this reason, the momentum measured by the
HERMES spectrometer [6] (located downstream of the beam) is
different from the particle’s momentum at the relevant point of
interaction or decay. (For example, a created particle may fly a
measurable distance within the magnetic field before decaying.)
The position of the interaction point cannot be obtained by
extrapolating the straight lines provided by track detectors; the
particles follow curved paths inside the target region, where no
direct measurements are available. Not even the radius of
curvature is constant in the target region, since the magnetic
field is not uniform. As a result, the particle trajectory cannot be
described by an analytic function. To learn the true momenta and
positions of particles at their interaction points, we propose a
method to obtain the actual trajectories of the charged particles
from available data. This paper traces particles back to the target
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given a three-dimensional (3-D) magnetic field map of the region
and information provided by the HERMES spectrometer.

2. Charged particles transport within a magnetic field

The force F exerted by a magnetic field B on a particle with
charge e and velocity V is given by the Lorentz formula:

F = eV x B. (1)

A charged particle moving in a static, uniform magnetic field
perpendicular to its trajectory experiences uniform circular
motion with a radius p given by

1 qeB;
p P
Here P; is the (scalar) momentum of the particle and B; is the
intensity of the magnetic field. Note that the charge of the particle
is given in units of e: ¢ = 1 for a positron, ©t*, K™ or proton, and
q = —1 for the corresponding antiparticles.

To learn the real trajectory of a low-momentum particle,
its deflection due to the magnetic field must be known.
Unfortunately, the real magnetic field is not uniform. For example,
under traverse polarization the B, component of the external field
is dominant inside the target cell—but the By and B, components
also have to be taken into account for accurate experimental
results.

Our method describes the transport of a charged particle from
position d@ at time t to position ¢ at time t + At. The relevant
vectors are sketched in Fig. 1.

The magnetic field at d is denoted §(BX, By, B;). A particle at that
position has momentum P in the laboratory frame. We define a
new orthonormal coordinate system i as follows:

. (2)
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Fig. 1. Sketch of a charged particle deflected by a magnetic field B. The red dots dc
trace the real trajectory from d at time ¢ to ¢ at time t + At. The algorithm consists
of two steps: one to calculate the particle’s revolution about O; (from d to 5), and a
second to calculate its linear motion along the field direction (from bto ). See text
for details.

The particle velocities in the i, and , directions can then be
written as

P.i
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where m = ymy is the relativistic mass and my is the rest mass. In
this application the Lorentz factor y can be defined conveniently

as E/(moc?), where E = 1/|P|?> 4+ (mgc?)? is the total energy of the
particle.

The velocity along the iy axis is 0 by construction.

Assuming the magnetic field can be treated as uniform over a
small volume near the current position of the particle, Eq. (2)
gives the radius of curvature in the tiy — tiy plane:

_P-i
qelB|

(5)

The angular velocity of the particle about an axis located at
point O(r, 0,0) in the (i, y, ti;) coordinate frame (see Fig. 1) is

(6)
and the speed of the particle is

v:@. (7)

m

The time At required for the particle to move a preset distance
length! I can be calculated as
l

At:;. (8)

In the laboratory frame, the new velocity O-[l; is created by

rotating the vector 0?1(4, 0.0,0.0) through an angle A¢ about the
vector 1. That is,

0:b=A- O (9)
where A is a rotation matrix. Here A¢[rad] = wAt.

— — — —>
The cgange ab can be calculated as ab = O:b — O:a. The new
position b(by, by, b,) in the laboratory frame can be calculated from
the position d(ayx, ay, a) as

- —
b=d+ ab. (10)

Position ¢(cy, ¢y, c;), where the charged particle is located after
moving from position d at time t to position ¢ at time t + At, can
be calculated by shifting an additional distance V,,At along the i,
direction from b:

€= Db+ VAt (11)

The momentum f’(PX,Py,PZ) at d also changes to a new value, P.
The momentum of the particle at position ¢ can be calculated
using the same rotation matrix:

P=A.P. (12)

For more details on how to reconstruct the trajectory of a charged
particle, the Appendix presents our code for one step of the
calculation. It is written in the ROOT platform [7]. Setting [>0 in
Eq. (9) produces the forward trajectory, while <0 yields the
backward trajectory.

! Such as 0.1 cm, but this number can be adjusted according to the distance
between available measurements and the homogeneity of the field.
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