Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

CrossMark

Rong Lin, Wenbo Yue*, Fangzhou Niu, Jie Ma

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China

ARTICLE INFO

Article history: Received 5 March 2016 Received in revised form 10 April 2016 Accepted 17 April 2016 Available online 21 April 2016

Keywords: Graphene Mesoporous silica Mesoporous metal oxide Lithium-ion battery

ABSTRACT

As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Grapheneencapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of grapheneencapsulated mesoporous metal oxides (SnO₂, Mn₃O₄), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion batteries (LIBs) are one of the most popular types of batteries for portable electronics due to their outstanding advantages such as high energy density, long cycle life, no memory effect and environmental friendliness [1]. Among anode materials for LIBs, metal oxides are naturally abundant and possess much higher theoretical capacities (e.g., \sim 782 mA h g⁻¹ for SnO₂ and \sim 937 mA h g⁻¹ for Mn₃O₄) compared to the commercial graphite anode $(\sim 372 \text{ mA} \text{ hg}^{-1})$ [2,3]. However, the poor electronic conductivity and the severe volume change of metal oxides during the charge and discharge process may result in the rapid capacity fading and even the end of the cycle life [4,5]. To overcome these drawbacks of metal oxides, some methods are developed such as fabrication of nanosized or hollow materials to alleviate the volume variation of metal oxides or introduction of carbon component to increase the electronic conductivity of the composite [6-9]. Mesoporous metal oxides have large surface areas and uniform mesopores, which may increase the contact area between metal oxides and the electrolyte, shorten the diffusion pathway of Li⁺ ions and reduce the volume variation of metal oxides during cycles [10-12]. Thus mesoporous metal oxides

http://dx.doi.org/10.1016/j.electacta.2016.04.095 0013-4686/© 2016 Elsevier Ltd. All rights reserved. usually exhibit better electrochemical properties than their bulk counterparts [13,14]. However, the mesopores of metal oxides may collapse during the lithiation and delithiation process owing to the reaction mechanism, leading to the decreased capacities after several cycles [15]. Up to now, the structural stability of mesoporous metal oxides during cycles is still one of the major factors that affect their electrochemical performance.

In our previous report, the electrochemical performance of mesoporous metal oxides can be highly improved by graphene encapsulation because the graphene shell can increase the structural stability and the electronic conductivity of the composite [16,17]. In a typical procedure for the synthesis of graphene-encapsulated mesoporous metal oxides, the surfaces of metal oxides and graphene oxide (GO) are oppositely charged over a broad range of pH values in order to wrap metal oxides in GO nanosheets. Accordingly, metal oxides with high isoelectric points (IEP>6) are necessary in view of the low isoelectric point of GO (IEP = $3 \sim 4$) [16–18]. On the contrary, mesoporous SnO₂ (denoted as m-SnO₂) is hardly wrapped by GO nanosheets based on our previous study because its isoelectric point (IEP = \sim 4) is very close to that of GO [19,20]. Although the surface modification of metal oxides with amino groups may increase the isoelectric point [21], the mesostructure of metal oxides is partially destroyed due to the harsh synthetic condition, which may reduce the electrochemical performance of mesoporous metal oxides. Therefore, a novel strategy for the coassembly of GO nanosheets and metal oxides

^{*} Corresponding author. Tel.: +86 10 58804229; fax: +86 10 58802075. *E-mail address:* wbyue@bnu.edu.cn (W. Yue).

with low isoelectric points is desired for the further performance improvement of graphene-encapsulated mesoporous metal oxides (e.g., m-SnO₂).

In this work, metal oxides (SnO₂ and MnO₂) are formed inside the pores of mesoporous silica template, and then the surface of silica is positively charged by grafting of amino groups. After wrapped by GO nanosheets, the silica template is removed, resulting in the formation of mesoporous metal oxides within the graphene shell. This novel synthesis method avoids the structural destruction of mesoporous metal oxides, and can be extended to the preparation of other graphene-encapsulated mesoporous materials. In addition, some mesoporous metal oxides (e.g., m-MnO₂) can be reduced when calcination in presence of graphene, providing an alternative approach to the synthesis of low valence mesoporous metal oxides (e.g., m-Mn₃O₄) [22]. Compared to m-SnO₂ and m-Mn₃O₄, graphene-encapsulated M-SnO₂ and M-Mn₃O₄ (denoted as GE-m-SnO₂ and GE-m-Mn₃O₄) exhibit higher reversible capacity and superior cycle/rate performance. Furthermore, the electrochemical behavior of G-m-SnO₂ is also better than that of graphene-encapsulated mesoporous SnO₂ reported in our previous work due to the high-quality graphene encapsulation [19].

2. Experimental

2.1. Sample preparation

GO and mesoporous silicas (SBA-15 and SBA-16) were synthesized according to literature methods (see the Supporting Information) [23–25]. M-SnO₂ was prepared using SnCl₂ as the precursor and SBA-15 as the template. In a typical synthesis, 1.5 g of SnCl₂·2H₂O and 1.0 g of SBA-15 (or SBA-16) were mixed and grinded for 1 h to obtain the homogeneous powder. Subsequently, the powder was calcined at 700 °C for 3 h in a muffle furnace with a temperature heating rate of $1.5 °C min^{-1}$. After cooling down to the room temperature, SBA-15 containing SnO₂ (denoted as SBA-15-SnO₂) was obtained. After removal of the silica template in a 2 M NaOH solution at 80 °C for 2 h, m-SnO₂ was collected by centrifugation, washed with distilled water several times and dried at 60 °C in an oven. Mesoporous SnO₂ prepared using SBA-16 as the template was denoted as m-SnO₂-x.

GE-m-SnO₂ (or GE-m-SnO₂-x) was synthesized by a modified stepwise heterocoagulation method. In a typical synthesis, 0.1 g of SBA-15-SnO₂ was first dispersed into 20 mL of n-hexane via sonication. After 30 min, 0.2 mL of APTES (3-Triethoxysilylpropylamine) was poured into the above solution and refluxed for 12 h at 70 °C to obtain APTES-modified SBA-15-SnO₂ (denoted as SBA-15-SnO₂-NH₂). Subsequently, 0.04 g of SBA-15-SnO₂-NH₂ was dispersed in 80 mL of distilled water, and 0.01 g of GO was dispersed in another 80 mL of distilled water by ultrasonication for 1 h. The pH of GO solution was adjusted to \sim 8 with aqueous ammonia, and the pH of SBA-15-SnO₂-NH₂ suspension was adjusted to ~5 with dilute hydrochloric acid. The SBA-15-SnO₂-NH₂ suspension was then added dropwise into the GO solution under mild magnetic stirring. After 1 h, the precipitate was collected and calcined at 400 °C for 10 min in a tubular furnace under a N₂ flow in order to reduce GO to graphene. After removal of the silica template in a 2 M NaOH solution at 80 °C for 2 h, GE-m-SnO₂ was collected by centrifugation, washed with distilled water several times and dried at 60 °C in an oven.

GE-m-Mn₃O₄ was synthesized using a similar procedure. In a typical synthesis, 1.5 g of Mn(NO₃)₂·9H₂O was dissolved in 20 mL ethanol and then 1.0 g of SBA-15 was added into this solution. After the solvent was evaporated out at room temperature, the powder was collected and annealed at 300 °C for 5 h in a muffle furnace with a temperature heating rate of 1 °C min⁻¹. After cooling down

to the room temperature, SBA-15 containing MnO₂ (denoted as SBA-15-MnO₂) was obtained. After modified the surface of SBA-15-MnO₂ with APTES, SBA-15-MnO₂-NH₂ was wrapped by GO nanosheets. The powder was then calcined at 400 °C for 10 min in a tubular furnace under a N₂ flow, and MnO₂ was reduced to Mn₃O₄ in presence of graphene. Finally, GE-m-Mn₃O₄ was collected after removal of the silica template in NaOH solution. For comparison, m-Mn₃O₄ was prepared by heating GE-m-Mn₃O₄ at 400 °C for 5 h in a muffle furnace to remove graphene.

2.2. Sample characterization

Specimens were initially characterized using X-ray diffraction (XRD) on a Phillips X'pert Pro MPD diffractometer with Cu Ka radiation. A Quantachrome NOVA 2000e sorption analyzer was used to examine the N₂ adsorption and desorption properties of specimens at liquid nitrogen temperature. The Zeta-potencials of GO, m-SnO₂ and SBA-15-SnO₂-NH₂ suspension were measured by ZetaPlus zetapotencial analyzer (Brookhaven Instruments Corporation). The Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet-380 Fourier-transform infrared spectrometer in the range of $400-4000 \text{ cm}^{-1}$. X-ray photoelectron (XPS) spectra were recorded on a Shimadzu Axis Ultra spectrometer with an Mg K α = 1253.6 eV excitation source. Further characterization was performed by using transmission electron microscopy (TEM), high-resolution TEM (HRTEM) on a JEOL JEM-2011 electron microscope operated at 200 kV, and scanning electron microscope (SEM) on a JEOL JSM-6700F electron microscope at an accelerating voltage of 1 kV. Energy-dispersive X-ray microanalysis (EDX) attached in an electron microscope was used to qualitatively determine the present elements.

2.3. Electrochemical measurements

For electrochemical characterization, the composite electrodes were fabricated by mixing the active materials, acetylene black and polyvinylidene difluoride (PVDF) dissolved in N-methyl-2-pyrrolidine (NMP) in a weight ratio of 80:10:10. The mixed slurry was pressed onto a copper foil and dried at 110°C in vacuum for 24 h. Cell assembly was carried out in an Ar-filled glove box. The electrolyte was 1 M solution of LiPF₆ dissolved in a EC:DEC:DMC solution with a 1:1:1 volume ratio. The area of the electrode was 2.0 cm² and the mass loading of active materials was about 1.8 mg cm^{-2} . Electrochemical performance was measured using a CR2032-type coin cell with lithium metal as the negative electrode. The galvanostatic charge-discharge performance was measured with a LAND test system at room temperature, and the voltage range was from 0.01 to 3.0 V (versus Li/Li⁺), with a constant current of 0.1–2C (1C equals to 782 mA h g^{-1} for SnO₂-containing samples, and $937 \text{ mA} \text{ hg}^{-1}$ for Mn_3O_4 -containing samples). Cyclic voltammetry tests were performed between 0.01 and 3.0 V with a scan rate of 0.5 mV s⁻¹, and the electrochemical impedance spectroscopy (EIS) was carried out in the frequency range from 100 kHz to 10 mHz on a Gamry Interface 1000 electrochemical station.

3. Results and discussion

3.1. m-SnO₂ and GE-m-SnO₂

The porosities of m-SnO₂ and m-SnO₂-x were examined using the N₂ adsorption/desorption technique (see the Supporting Information). The N₂ adsorption/desorption isotherms and pore size distributions of m-SnO₂ and m-SnO₂-x (Fig. S1) indicate that these SnO₂ particles are mesoporous materials with uniform pores [26,27]. The overall synthesis procedure of m-SnO₂ and GE-m-SnO₂ is shown Fig. 1**A**. The Sn-containing precursor is first injected Download English Version:

https://daneshyari.com/en/article/182885

Download Persian Version:

https://daneshyari.com/article/182885

Daneshyari.com