Available qnline at www.sciencedirect.com NUCLEAR
: INSTRUMENTS

ScienceDirect & METHODS

. o ' IN PHYSICS
e RESEARCH
ELSEVIER

Nuclear Instruments and Methods in Physics Research A 586 (2008) 444-451 Sectona

www.elsevier.com/locate/nima

An XML-based communication protocol for accelerator
distributed controls

L. Catani™

INFN-Roma Tor Vergata, Roma, Italy

Received 30 October 2007; received in revised form 29 November 2007; accepted 8 December 2007
Available online 23 December 2007

Abstract

This paper presents the development of XMLvVRPC, an RPC-like communication protocol based, for this particular application, on
the TCP/IP and XML (eXtensible Markup Language) tools built-in in LabVIEW. XML is used to format commands and data passed
between client and server while socket interface for communication uses either TCP or UDP transmission protocols. This
implementation extends the features of these general purpose libraries and incorporates solutions that might provide, with limited
modifications, full compatibility with well established and more general communication protocol, i.e. XML-RPC, while preserving
portability to different platforms supported by LabVIEW. The XMLVRPC suite of software has been equipped with specific tools for its
deployment in distributed control systems as, for instance, a quasi-automatic configuration and registration of the distributed
components and a simple plug-and-play approach to the installation of new services. Key feature is the management of large binary

arrays that allow coding of large binary data set, e.g. raw images, more efficiently with respect to the standard XML coding.

© 2007 Elsevier B.V. All rights reserved.
PACS: 07.05.Bx; 07.05.Dz; 07.05.Hd; 07.07.Hj

Keywords: Control systems; Communication protocols; XML

1. Introduction

At INFN-LNF (Laboratori Nazionali di Frascati of
INFN) development of control systems for new accel-
erators under construction should be based on well-
established and reliable technologies for communication
while re-use of instrument drivers, sub-system controls and
measurement applications, or at least part of them, already
developed must be guaranteed. Existing control systems
are mainly based on LabVIEW that is a very common
development environment for controls. Limited size
(and man power) projects, especially, take advantage of
its ease of use and profit from the wide set of tools and
libraries either built-in or developed by the large users
community to interface and control instrumentation, create
analysis program and display results effectively. LabVIEW

*Tel./fax: + 390672594544,
E-mail address: luciano.catani@roma?2.infn.it

0168-9002/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
d0i:10.1016/j.nima.2007.12.019

also offers a number of tools to transfer, via network, data
between distributed components of the control/acquisition
system: DataSocket, VI Server, VI reference, TCP/IP and
UDP and also interfaces to .NET and ActiveX. The above-
mentioned communication tools are powerful and well
suited for many applications but, with the exception of
TCP/IP and UDP, are not flexible enough to allow
implementation of a real communication protocol and,
moreover, most of them are either proprietary or work
only between LabVIEW applications. In addition the
LabVIEV Internet Toolkit includes a HTTP server and
the possibility to operate the VIs (Virtual Instruments,
i.e. the LabVIEW applications or subroutines) as CGIs
that a client can invoke using the HTTP protocol to
execute particular procedure on the server side. This is
relatively flexible solution but offers low performances and
limited features. When compatibility and flexibility is an
issue, TCP/IP and UDP protocols are, thus, the natural
choice. The LabVIEW TCP/IP and UDP libraries provide


www.elsevier.com/locate/nima
dx.doi.org/10.1016/j.nima.2007.12.019
mailto:luciano.catani@roma2.infn.it

L. Catani | Nuclear Instruments and Methods in Physics Research A 586 (2008) 444451

the basic tools for TCP and UDP data transmission over
ethernet and they are compliant with standard socket
communication being the basis for many data transfer
protocols.

2. The XMLvRPC protocol
2.1. XML for communication in control systems

XML (eXtensible Markup Language) is becoming a very
popular way of coding data especially when interoper-
ability and compatibility between platforms and program-
ming languages is an issue. Client/server communication
protocols based on this coding exist, among these the more
interesting are SOAP [1] and XML-RPC [2]. The latter, on
which I put my attention, it is basically a remote procedure
call [3] that uses HTTP, or other TCP/IP and UDP
protocols, as the transport and XML as the coding
allowing complex, and relatively large, data structures to
be transmitted, processed and returned.

Services provided by the server are called methods that a
client can invoke by issuing methodCall to the server.
The latter, in turn, replies sending the result in the form of
methodResponse.

Fig. 1 shows an example of messages passed between a
client and a server in the XMLVRPC protocol. They
include header with declarations and methodCall or
methodResponse fields. Only part of fields in the header
are actually used by the XMLvRPC protocol (e.g. Host,
Content-length). The others are included for future
compatibility with XML-RPC.

The methodCall contains, enclosed with the corre-
spondent tags, the name of the method to be executed on
the server side (methodName) and optional parameters
(params). The methodResponse, being the reply
message of the server to the client, contains the name of
the client application that should receive the data on the
client side (methodName) and data (params).

POST / HTTP/1.1

User-Agent: LabVIEW (XMLvVRPC)
Host: dummy.domain.com:6430
Content-Type: text/xml
Content-length: 155

<?xml version="1.0"7?>
<methodCall>
<methodName>get image data</methodName>
<params>
<name>cam_0l</name>
<dimH>8</dimH>
<dimV>8</dimV>
</params>
</methodCall>

445

The specification of the methodName in the metho-
dResponse introduces the first relevant difference of
XMLvRPC with respect to XML-RPC.

methodNames are, usually, identical in both method-
Call and methodResponse that means, for a particular
service, there is an application that produce the data on the
server and a correspondent application on the client that
display, analyze, etc. the data received. This is not
necessarily true in the XMLVRPC since the protocol
allows also asymmetric call/response, as it will be described
later in Section 3.1.

2.2. Implementation in LabVIEW

The implementation of XML-RPC communication
protocol in LabVIEW, aimed at an accelerator control
system, would present two main complications. First
of all the XML code (of data) generated by LabVIEW
built-in tools is not compatible with the XML-RPC
specifications. Secondly, standard XML coding of binary
arrays, that might be transferred between components in a
control system (ADC buffered readout, raw images from
digital camera, etc.), results in a significant increase of
data size that makes the XML coding of large binaries
impracticable.

It has been mentioned that LabVIEW provides a
convenient set of tools to convert its data type to XML
format according to the LabVIEW XML schema. Un-
fortunately, the LabVIEW XML schema, LVXMLSche-
ma.xsd, cannot be customized or replaced by user. It
should be noted that one can write LabVIEW virtual
instruments to implement XML coding/decoding based on
its own, or any other, schema instead of using built-in
coding/parsing tools.

Anyway, if one is only interested (as we are for this
particular application) in LabVIEW-based distributed
control/acquisition systems, this is not a relevant limita-
tion. In this case, actually, it is preferable to preserve full
LabVIEW compatibility to take advantage of its XML

HTTP/1.1 200 OK
Connection: close
Content-length:621
<?xml version="1.0"?>
<methodResponse>
<methodName>get image data</methodName>
<params>
<Strings>
<Name>image(2)(U8) </Name>
<Val>
0oooooo
0ooooooa
00000
0ooooo
0o00000000a
ooooo
</Vals
</String>
</params>
</methodResponse>

Fig. 1. methodcCall (left) and methodResponse (right) in the XMLVRPC protocol. Non-printable characters enclosed with (Val) tags are the result of

pre-processing of 2D-binary array.



Download English Version:

https://daneshyari.com/en/article/1829018

Download Persian Version:

https://daneshyari.com/article/1829018

Daneshyari.com


https://daneshyari.com/en/article/1829018
https://daneshyari.com/article/1829018
https://daneshyari.com

