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a b s t r a c t

We present an expression for the covariance matrix of the set of state vectors describing a track fitted

with a Kalman filter. We demonstrate that this expression facilitates the use of a Kalman filter track

model in a minimum w2 algorithm for the alignment of tracking detectors. We also show that it allows

to incorporate vertex constraints in such a procedure without refitting the tracks.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Minimum w2 algorithms for the alignment of tracking
detectors generally come in two flavors, namely those that ignore
and those that do not ignore the correlations between hit
residuals. The former are sometimes called local or iterative

methods while the latter are called global or closed-form methods
[1]. The advantage of the closed-form methods is that for an
alignment problem in which the measurement model is a linear
function of both track and alignment parameters the solution
that minimizes the total w2 can be obtained with a single pass
over the data.

The covariance matrix for the track parameters is an essential
ingredient to the closed-form alignment approach [2]. If the track
fit is performed using the standard expression for the least
squares estimator (sometimes called the standard or global fit
method), the computation of the covariance matrix is a natural
part of the track fit. This is why previously reported implementa-
tions of the closed-form alignment procedure (e.g. Refs. [3–8])
make use of the standard fit.

In contrast most modern particle physics experiments rely on a
Kalman filter track fit [9,10] for default track reconstruction. The
Kalman filter is less computationally expensive than the standard
fit and facilitates an easy treatment of multiple scattering in the
form of process noise. However, the computation of the
covariance matrix in the common Kalman track fit is not
complete: the correlations between track parameters at different
position along the track are not calculated. In the presence of

process noise these correlations are non-trivial. Consequently, the
result of the common Kalman track fit cannot be used directly in a
closed-form alignment procedure.

In this paper, we present the expressions for the computation
of the global covariance matrix—the covariance matrix for all
parameters in the track model—in a Kalman filter track fit. We
show how this result can be used in an alignment procedure.
Furthermore, using similar expressions we demonstrate how
vertex constraints can be applied in the alignment without
refitting the tracks in the vertex. To illustrate that our approach
leads to a functional closed-form alignment algorithm, we present
some results obtained for the alignment of the LHCb vertex
detector with Monte Carlo simulated data.

An important motivation for extending the Kalman track fit for
use in a closed-form alignment approach is that the estimation of
alignment parameters is not independent of the track model.
Typically, in closed-form alignment procedures the track model
used in the alignment is different from that used in the track
reconstruction for physics analysis, which in practise is always a
Kalman filter. Sometimes the track model in the alignment is
simplified, ignoring multiple scattering corrections or the mag-
netic field. The imperfections in the track model used for
alignment will partially be absorbed in calibration parameters.
Consequently, in order the guarantee consistency between track
model and detector alignment, it is desirable to use the default
track fit in the alignment procedure.

The Kalman filter has also been proposed for the estimation of
the alignment parameters themselves [11]. This method for
alignment is an alternative formulation of the closed-form
alignment approach that is particularly attractive if the number
of alignment parameter is large. Our results for the global
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covariance matrix of the Kalman filter track model and for vertex
constraints can eventually be applied in such a Kalman filter
alignment procedure.

2. Minimum w2 formalism for alignment

To show that the global covariance matrix of the track
parameters is an essential ingredient to the closed-form align-
ment approach, we briefly revisit the minimum w2 formalism for
alignment. Consider a track w2 defined as

w2 ¼ ½m� hðxÞ�TV�1
½m� hðxÞ� (1)

where m is a vector of measured coordinates, V is a (usually
diagonal) covariance matrix, hðxÞ is the measurement model and x

is the vector of track parameters. Note that Eq. (1) is a matrix
expression: m and h are vectors and V is a symmetric matrix, all
with dimension equal to the number of measurements.

For a linear expansion of the measurement model around an
initial estimate x0 of the track parameters

hðxÞ ¼ hðx0Þ þ Hðx� x0Þ

where

H ¼
qhðxÞ

qx

����
x0

is sometimes called the derivative or projection matrix, the
condition that the w2 be minimal with respect to x can be written
as

0 �
dw2

dx
¼ �2HTV�1

½m� hðx0Þ � Hðx� x0Þ�.

The solution to this system of equations is given by the well
known expression for the least squares estimator

x ¼ x0 � CHTV�1
½m� hðx0Þ� (2)

where the matrix C is the covariance matrix for x

C ¼ ðHTV�1HÞ�1. (3)

If the measurement model is not linear, i.e. if H depends on x,
expression Eq. (2) can be applied iteratively, until a certain
convergence criterion is met, for example defined by a minimum
change in the w2. In that case it makes sense to write Eq. (2) in
terms of the first and second derivative of the w2 at the current
estimate x0

x� x0 ¼ �
d2w2

dx2

�����
x0

0
@

1
A
�1

dw2

dx

����
x0

and regard the iterative minimization procedure as an application
of the Newton–Raphson method.

We now consider an extension of the measurement model
with a set of calibration parameters a

hðxÞ ! hðx;aÞ.

The parameters a are considered common to all tracks in a
particular calibration sample. We estimate a by minimizing the
sum of the w2 values of the tracks simultaneously with respect to
a and the track parameters xi of each track i

q
P

iw2
i

qa ¼ 0 and 8i

qw2
i

qxi
¼ 0. (4)

Note that the index i refers to the track and not to a component of
the vector x. We will omit the index from now on and consider
only the w2 contribution from a single track.

The number of parameters in the minimization problem above
scales with the number of tracks. If the number of tracks is large

enough, a computation that uses an expression for the least
squares estimator analogous to Eq. (2) is computationally too
expensive. A more practical method relies on a computation in
two steps. First, track parameters are estimated for an initial set of
calibration parameters a0. Subsequently, the total w2 is minimized
with respect to a taking into account the dependence of xi on a,
e.g. through the total derivative

d

da ¼
q
qaþ

dx

da
q
qx

. (5)

The derivative matrix dx=da in Eq. (5) follows from the
condition that the w2 of the track remains minimal with respect
to x, which can be expressed as

d

da
qw2

qx
¼ 0

and results in

dx

da ¼ �
q2w2

qaqx

q2w2

qx2

 !�1

. (6)

Note that if the problem is linear this derivative is independent of
the actual value of x or a. Consequently, in this limit this
expression remains valid even if the track w2 was not yet
minimized with respect to x.

The condition that the total w2 of a sample of tracks be minimal
with respect to both track and alignment parameters can now be
expressed as

0 �
dw2

da . (7)

For M alignment parameter this defines a system of M coupled
non-linear equations. In analogy with the procedure introduced
for the track w2 minimization above we search for a solution by
linearizing the minimum w2 condition around an initial value a0

and solving the linear system of M equations

d2w2

da2

�����
a0

Da ¼ �dw2

da

����
a0

(8)

for Da. In the remainder of this section we derive the expressions
for these derivatives.

To simplify the notation we define the residual vector of
the track

r ¼ m� hðx;aÞ

and its derivative to a

Ak‘ �
qrk

qa‘
.

We linearize r around the expansion point ðxða0Þ;a0Þ, and using Eq.
(6) obtain for any total derivative to a

d

da ¼
q
qa� ATV�1HC

q
qx

.

(The minus sign appears because H is the derivative of h and not of
r.) In this expression we have substituted the covariance matrix
for C for x. The first and second derivatives of the w2 contribution
of a single track are now given by

dw2

da ¼ 2ATV�1 V � HCHT
� �

V�1r (9)

d2w2

da2
¼ 2ATV�1 V � HCHT

� �
V�1A. (10)

The matrix

R � V � HCHT (11)
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