Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/nima)

Nuclear Instruments and Methods in Physics Research A

journal homepage: <www.elsevier.com/locate/nima>

A high-resolution TOF detector—A possible way to compete with a RICH detector

J. Va'vra ^{a,}*, C. Ertley ^b, D.W.G.S. Leith ^a, B. Ratcliff ^a, J. Schwiening ^a

^a SLAC, Stanford University, P.O. Box 4349, Stanford, CA 94309, USA¹ ^b Argonne National Laboratory, Argonne, IL 60439, USA

article info

Available online 9 July 2008 Keywords: Photodetectors Cherenkov detectors RICH **TOF**

ABSTRACT

Using two identical 64-pixel Burle/Photonis MCP-PMTs (micro-channel plate PMT) to provide start and stop signals, we have achieved a timing resolution of $\sigma_{\rm{Single_detector}}$ \sim 7.2 ps for $N_{\rm{pe}}$ \sim 100 photoelectrons (N_{pe}) with a laser diode providing a 1 mm spot on the MCP window. The limiting resolution achieved was $\sigma_{\text{Single_detector}}$ ~5.0 ps for N_{pe}~250, for which we estimate the MCP-PMT contribution of $\sigma_{\text{MCP-PMT}}$ ~4.5 ps. The electronics contribution is estimated as $\sigma_{\text{Electrons}} = 3.42$ ps. These results suggest that an ultra-high-resolution TOF detector may become a reality at future experiments one day. & 2008 Published by Elsevier B.V.

1. Introduction

We present new timing measurements with Burle/Photonis MCP-PMT (micro-channel plate PMT) with $10 \,\mu m$ holes. Our measurements use two identical MCP-PMT and electronics setups, driven by a fiber splitter and operated in a relative start–stop mode (which eliminates drifts in an external laser diode start signal). A similar arrangement was used in the test beam. We have operated both MCP-PMTs at a lower gain $(<10⁵)$, where the detection is not sensitive to single photoelectrons, but where it has a linear response in the range of $N_{\rm pe}{\sim}$ 30–50 photoelectrons. This is a departure from the previous methodology [\[1\],](#page--1-0) where we operated in single photoelectron mode. This provided good timing resolution already at $N_{\rm pe}{\sim}20$, however, at the expense of worse linearity, aging, rate handling capability, and pulse recovery.

[Fig. 1](#page-1-0) shows the expected resolution in the beam² and with a laser³. These are simple estimates, which neglect intricacies of pulse shaping, constant-fraction (CFD) timing, photoelectron creation and transport, MCP multiplication, etc. 4.5

The presented TOF detector is being considered as one possible option for a Super-B PID detector [\[3\]](#page--1-0) in the forward/backward regions. For that application, all 64 pads need to be instrumented, the detector must work at 16 kG, its radiator would be a 7–10 mm-thick MCP-PMT's window, and its electronics would be based either on a similar concept as presented, or a waveform digitization.

Generally, a TOF-based PID is competitive with a RICH PID, if one can obtain σ_{TOF} ~5-10 ps (for an Aerogel RICH with n ~1.03), or σ_{TOF} ~15–20 ps (for a DIRC-like RICH with n ~1.47), and one has at least 2 m of TOF path [\[3\].](#page--1-0) There is no practical way to compete with a gaseous RICH at higher momenta [\[4\].](#page--1-0)

2. Experimental setup

[Fig. 2](#page-1-0) shows the MCP-PMT enclosure with a fused silica radiator (10 mm diameter, 10 mm long) and the fiber optics. MCP-PMT has 64 pads; four pads under the radiator were shorted together and connected to an amplifier. The rest of the pads were shorted to ground. The laser diode optics produced a 1 mm spot on the MCP face, while the ESA test beam had a spot size of σ ~1-2 mm. Two identical MCP-PMT detectors were prepared, both having 10 μ m diameter holes⁶. Electronics⁷ of this test and its pulser⁸ calibration are shown in [Fig. 3](#page--1-0). The laser light was split in a fiber splitter.

⁻ Corresponding author. Tel.: +1650 926 2658; fax: +1650 926 4178. E-mail address: [jjv@slac.stanford.edu \(J. Va'vra\).](mailto:jjv@slac.stanford.edu)

¹ Work supported by the Department of Energy, contract DEAC02-76SF00515. ² Beam: $\sigma \sim \sqrt{[\sigma_{\text{MCP-PMT}}^2+\sigma_{\text{Radiator}}^2+\sigma_{\text{Pad}^2}^2+\sigma_{\text{Electronic}}^2]} \sim \sqrt{[(\sigma_{\text{TTS}}/\sqrt{N_{\text{pe}}})^2+(((L/\text{cos}\Theta_{\text{C}})/\sigma_{\text{QFT}})^2+](\sigma_{\text{MTP}})^2]}$ (300 mm/ps)/ $n_{\text{group}}/(\frac{(12N_{\text{pe}})^2+(\left(L_{\text{pad}}/300 \,\mu\text{m}/\text{ps}\right)/\sqrt{(12N_{\text{pe}})^2+(3.42 \,\text{ps})^2}]$, where L is a radiator length, L_{pad} is a pixel size, N_{pe} is a number of photoelectrons, and n_{group} is a group refraction index.

³ Laser: $\sigma \sim \sqrt{[\sigma_{\text{MCP-PMT}}^2 + \sigma_{\text{Laser}}^2 + \sigma_{\text{Electronic}}^2]} \sim \sqrt{[(\sigma_{\text{TTS}}/\sqrt{N_{\text{pe}}})^2 + \sqrt{((\text{FWHM}/2.35)}]}$ $\sqrt{(N_{pe})^2+(3.42 \text{ ps})^2}$ \sim $\sqrt{[3.8^2+1.8^2+3.42^2}$ \sim 5.4 ps for $N_{pe} = 50$ photoelectrons; PiLas laser diode is made by Advanced Laser Diode Systems, D-12489 Berlin, Germany.

⁴ Hamamatsu data sheet info for R3809U-50 tube: $\sigma_{\rm TTS}$ ~11 ps.

⁵ Nagoya people measured for R3809U-50 tube: σ TTS~30 ps.

Two Burle/Photonis MCP-PMTs, S/N: 11180401 and 7300714.

⁷ Electronics: Ortec TAC 588, CFD 9327, 14 bit ADC 114.

⁸ 200 MHz pulser with one start and multiple equally spaced random stops, made by Impeccable instruments, LLC, Knoxville, TN, USA, [www.](http://www.ImpeccableInstruments.com) [ImpeccableInstruments.com](http://www.ImpeccableInstruments.com).

Fig. 1. Expected resolution with a simple model (a) in a beam as a function of radiator thickness, and (b) with a laser as a function of number of photoelectrons. The calculation assumes measured numbers of σ_{TTS} \sim 27 ps for our laser test [\[1\]](#page--1-0), and $\sigma_{\rm TTS} {\sim} 11 \,\rm ps$ or $\sigma_{\rm TTS} {\sim} 30 \,\rm ps$ for Nagoya beam test [\[2\]](#page--1-0).

Fig. 2. Two identical detector setups were built to allow a relative start–stop measurement using either a laser or a beam (in the beam we remove the fiber to reduce the mass).

3. Experimental results with a laser diode

[Fig. 4](#page--1-0) shows the time resolution obtained with a laser diode⁹ with a fiber splitter and a tandem of two identical detectors, and each having a signal of $N_{\rm pe}{\sim}100$ photoelectrons, providing start and stop TAC signals (the circuit is shown in [Fig. 3a](#page--1-0)). The singledetector resolution is obtained by dividing the measured resolution by $\sqrt{2}$, resulting in $\sigma_{Single_detector} = \sigma / \sqrt{2} \sim 7.2$ ps. [Fig. 5](#page--1-0) shows this resolution as a function of number of photoelectrons N_{pe} for the CFD arming thresholds of -10 mV, the CFD walk (zerocrossing) threshold of +5 mV and MCP-PMT voltages of 2.28 and 2.0 kV, respectively, and compares it with a prediction. (see foot note 3) This prediction (see foot note 3) agrees well with the data if we assume $\sigma_{\rm TTS} {\sim}$ 110 ps, which is close to our measured number of σ ~106 ps for N_{pe}~2–3. Such a large value of σ _{TTS} is consistent with our choice of being linear for signals of $N_{\rm pe}{\sim}$ 30–50, for which we measure σ ~19 ps, according to [Fig. 5.](#page--1-0)

The limiting resolution at large N_{pe} ~250 (a large number for most of the applications) is found to be $\sigma_{Single_detector}$ ~5.0 ps. We estimate the MCP-PMT contribution to this result as $\sigma_{\text{MCP}-\text{PMT}}$ < 4.5 ps \cdot 10

We tried to improve the resolution by reducing the MCP rise time. This can be done, for example, by doubling the MCP-to-anode electric field [\[5\]](#page--1-0) by modifying the MCP resistor chain.¹¹ [Fig. 6](#page--1-0) shows that the results are slightly better at higher electric field.

For a red laser and bialkali photocathode, the emitted photoelectrons are practically at rest and the MCP rise time does not change as a function of the cathode-to-MCP electric field [\[5\];](#page--1-0) therefore we did not vary this field.

For any timing method there is some time-walk when one varies the number of photoelectrons (N_{pe}) [\[6\],](#page--1-0) and this effect has to be corrected off-line to achieve the best possible timing resolution. The amplitude correction is not entirely easy, as the MCP pulses are very fast. [Fig. 7](#page--1-0) shows the time-walk for the measurements shown in [Fig. 6](#page--1-0) using Ortec 9327 CFD; it is small for $20 \le N_{\text{pe}} \le 50$, and it is also smaller for the second resistor chain, which means the time-walk is smaller for smaller MCP rise time.

To see if we can improve the above results further by additional pulse-height correction, especially for small N_{pe} values, we have added double-threshold timing into the circuit —see [Fig. 8](#page--1-0). Although one can nicely correct the pulse-height variation using this method, in the final analysis, the results are not better compared to the method using the circuit on [Fig. 3,](#page--1-0) which indicates that the CFD timing handles a small level of pulse-height variation rather well.

4. Lessons from the test beam

We have tested the tandem of two detectors in a 10 GeV/c electron test beam at SLAC. The best expected $N_{\rm pe}$ is ${\sim}30\text{--}40$ from a 10 mm-long quartz radiator and the Burle Bialkali photocathode data for our two tubes. In addition, the aluminium coating of the quartz rods was not uniform. As can be seen in [Fig. 7,](#page--1-0) time-walk correction is necessary for N_{pe} < 20. There was no external pulseheight measurement implemented in this particular beam test to correct the time-walk. During the test, we used the 1st resistor chain (triangles in [Fig. 7](#page--1-0)). If we had used the 2nd resistor chain the time-walk would be smaller. In addition to the time-walk contribution, the expected resolution is worse for smaller N_{pe} see [Figs. 5 and 6](#page--1-0). As a result of these contributions, our initial test beam result resulted only in $\sigma_{\text{Single_detector}}$ ~23 ps.¹²

Possible ways to improve the result in future are: (a) implement a pulse-height measurement on fast MCP-PMT pulses, (b) ensure that N_{pe} > 25, (c) run with highest possible MCP-to-cathode and anode-to-MCP electric fields, (d) small

 9 PiLas laser diode, 635 nm, FWHM light spread \sim 30 ps.

¹⁰ MCP-PMT contribution to resolution: $\sigma_{\text{MCP-PMT}} < \sqrt{1/2} \{\sigma^2 - [\sigma_{\text{Electronic}}^2 - \sigma_{\text{Pulser}}^2]\}$ <4.5 ps, where σ ~7.0 ps, σ_{Pulser} ~2 ps, and $\sigma_{\text{Electronic}} = 3.42$ ps, $\sigma_{\text{Single_detector}} = 7.0$ $\text{ps}/\sqrt{2} = 5.0 \text{ ps}.$
¹¹ Another example: smaller MCP hole diameter, smaller rise time [\[6\].](#page--1-0)

¹² We plan to provide a full account of our beam tests in future publication.

Download English Version:

<https://daneshyari.com/en/article/1829203>

Download Persian Version:

<https://daneshyari.com/article/1829203>

[Daneshyari.com](https://daneshyari.com)