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Abstract

To calculate the upper limit for the Poisson observable at given confidence level with inclusion of systematic uncertainties in
background expectation and signal efficiency, formulations have been established along the line of Bayesian approach. A FORTRAN
program, BPULE, has been developed to implement the upper limit calculation.
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1. Introduction

A group of particle physics experiments involves the
search for new signal or measuring small signal at the
circumstance with significant background. A limit on, or a
measurement of, a physical quantity at a given confidence
level is usually set by comparing a number of detected
events with the expected number of background events in
the “signal” region where the signal events (if exist) shall
reside. How well this comparison can be made for the
observed events and the expected background depends
strongly on the systematic uncertainties existing in the
measurement. Therefore, systematic uncertainties must be
taken into consideration in the limit or confidence belt
calculation.

In the frame of frequentist statistics, confidence limits
are set using a Neyman construction [1]. This method
suffers from so-called undercoverage and “flip-flopping”
policy when the observable is close to the physics
boundary, namely, the actual coverage is less than the
requested coverage (confidence level) and to report a
central confidence interval or an upper limit is artificially
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decided by the experimenter’s choice. In particular, in the
case when no events have been observed, this method gives
no answer for the confidence interval.

Feldman and Cousins [2] proposed a new method to
construct confidence interval based on likelihood ratios,
which automatically provides a central confidence interval
or an upper confidence limit, which is decided by the
observed data itself. Therefore, it is often denoted as the
“unified approach”.

However, this approach also has its drawbacks. If the
observable is a Poisson variable, there is a background
dependence of the upper limit in the case of fewer events
observed than expected background. This can lead to
situation where measurements with higher background give
a smaller upper limit, which is clearly undesirable. To
overcome this shortcoming, Roe and Woodroofe [3] pro-
posed a solution to this problem by using such a fact that,
given an observation n, the background b cannot be large
than n in any case. Therefore, the usual Poisson pdf
(probability density function) should be replaced by a
conditional pdf, and then this conditional pdf is used to
construct the confidence interval. This approach solves the
background dependence of the upper limit, however, does not
satisfy all the requirements of proper coverage [4] and has
problems when applied to the case of a Gaussian distribution
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with boundaries [5]. An extension based on a Bayesian
approach with tests of coverage can be found in Ref. [6].

Along this line, a modification of the Neyman method
incorporating systematic uncertainty of the signal detection
efficiency has been proposed by Highland and Cousins [7],
in which a “‘semi-Bayesian’ approach is adopted, where an
average over the probability of the detection efficiency is
performed. This method is of limited accuracy in the limit
of high relative systematic uncertainties. On the other
hand, an entirely frequentist approach has been proposed
for the uncertainty in the background rate prediction [8].
This approach is based on a two-dimensional confidence
belt construction and likelihood ratio hypothesis testing
and treats the uncertainty in the background as a statistical
uncertainty rather than as a systematic one. Recently,
Conrad et al. extend the method of confidence belt
construction proposed in Ref. [2] to include systematic
uncertainties in both the signal and background efficiencies
as well as systematic uncertainty of background expecta-
tion prediction [9]. It takes into account the systematic
uncertainties by assuming a pdf which parameterizes our
knowledge on the uncertainties and integrating over this
pdf. This method, combining classical and Bayesian
elements, is referred to as semi-Bayesian approach. A
FORTRAN program, POLE, has been coded to calculate
the confidence intervals for a maximum of observed events
of 100 and a maximum signal expectation of 50 [10].

In the frame of Bayes statistics, Narsky depicted the
estimation of upper limits for Poisson statistic with the
known background expectation [11,12]. Treatment of
background uncertainty is discussed with the flat prior
for simplified cases of background expectation distribu-
tions in Refs. [7,13].

In this paper, we use Bayesian approach to formulate the
upper limit at given confidence level for the Poisson
observable incorporating systematic uncertainties in the
signal efficiency and background expectation. A FOR-
TRAN program has been developed to calculate the
corresponding upper limit.

2. Bayesian approach to estimate upper limit

In Bayesian approach one has to assume a prior pdf of an
unknown parameter and then perform an experiment to
update the prior distribution. The prior pdf reflects the
experimenter’s subjective degree of belief about unknown
parameter before the measurement was carried out. The
updated prior, called posterior pdf, is used to draw inference
on unknown parameter. This updating is done with the use
of Bayes theorem [14]. Assuming that n represents the
number of observed events, s is the number of signal events
which is unknown and to be inferred, p(n|s) is the conditional
pdf of observing n events with given signal s, 7(s) is the prior
pdf, the Bayes theorem gives the posterior pdf:

p(n|s)m(s)
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Here the lower limit of the integral is zero, which is the
possible minimum number of signal events. Using this
posterior pdf, one can calculate a Bayesian confidence
interval for the signal expectation at given confidence level
CL=1-«

SU
l—a= / h(s|n)ds.
SL

The upper limit of the number of signal events at

given confidence level CL=1—0a, Syp, is naturally
given by
Sup
l—oa= / h(s|n)ds. 2
Jo

The nice feature of the Bayesian approach is that the zero
value of an upper limit Syp always corresponds to the zero
value of confidence level CL =1—a, which is not
necessarily true for the classical approach. The most
important issue is to determine a prior pdf of the
parameter. This is an issue which brings most of
controversies into Bayesian methods. An important
question is that if one should use an informative prior,
i.e., a prior which incorporates results of previous
experiments, or a mnon-informative prior, i.e., a prior
which claims total ignorance. The major objection against
informative prior is based on such argument: if we
assume a prior which incorporates results of previous
experiments, then our measurement will not be indepen-
dent, hence, we will not be able to combine our results with
previous results by taking a weighted average. Thus, we
only discuss the Bayesian inference that assumes a non-
informative prior for the non-negative parameter of a
Poisson distribution.

For the case that in the “‘signal region” where the signal
events resides, the number of signal events is a Poisson
variable with unknown expectation s, and the number of
background events is a Poisson variable with expectation b,
the conditional pdf of observing n total events can be
written as

plnls) = e 0P R :!b)n : A3)

To deduce the posterior pdf, one has to assume a prior pdf.
Bayes stated that, the non-informative prior for any
parameter must be flat [14]. This statement is not based
on any strict mathematical argument, but merely his
intuition. The obvious weakness of Bayes prior pdf is that
if one can assume a flat distribution of an unknown
parameter, then one can also assume a flat distribution for
any function of this parameter; however, these two prior
functions are apparently not identical. Jeffreys [15,16],
Jaynes [17], and Box et al. [18] derived the non-informative
prior from first principle to resolve this problem, which are
proportional to 1/60 and 1/+/0, respectively, where 0 is the
unknown parameter. Comments on these three non-
informative priors can be found in Refs. [11,12]. For the
pdf shown in Eq. (3), the corresponding prior pdfs are
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