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Abstract

This paper is organized into two parts. In the first one we analyze the equipartitioning process in the presence of collisions for a

Gaussian anisotropic beam. Far from instabilities the equipartition process can be described correctly by using Landau’s collisional

theory, whereas when the dynamics of the system is strongly nonlinear (e.g. in the vicinity of a resonance) a hybrid dynamical–collisional

equipartition mechanism occurs. In the second part of the paper we discuss shortly a systematic study of the collective instabilities in a

symmetric periodic focusing channel for a KV beam by using the moments method. We emphasize differences occurring when the

periodic focusing lattice is replaced by the corresponding constant focusing one.
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1. Introduction

Charged particle beams in drivers for heavy ion fusion
are typically space charge dominated. As a consequence a
careful investigation of the collective instabilities and
resonances between the collective and nonlinear betatron
oscillations is required in order to minimize the losses.
Halo formation and growth is another relevant issue and
its control is related to suppressing envelope mismatch and
avoiding low-order resonances. Finally, in storage rings the
collisional effects cannot be neglected because the storage
time can be comparable with the relaxation time. For a
coasting beam (or a beam with long bunches) we have
developed a collisional two-dimensional model, which
assumes an organization of the real particles into parallel
charged filaments. A strong longitudinal coherence is
implicitly assumed. The parameters of the model are the
perveance and the bare phase advances of the confining
lattice. For a beam with a longitudinal particle density

Np�10
11 particles=m and a transversal dimension

Rbeam�1 cm, the corresponding (physical) number of
filaments is N ðphysÞ�106 [1]. This model, taking into
account Coulomb collisions, allows us to investigate the
relaxation of the system towards thermodynamic equili-
brium. In this context the relevant parameter is the
thermodynamic relaxation time trelax, defined as the chara-
cteristic time required for the system to reach the
equilibrium state specified by the self-consistent Maxwell–
Boltzmann (MB) distribution. The analysis has been done
in the constant focusing case. In the periodic focusing case
it is unclear whether an MB equilibrium exists. In
numerical simulations the number N of filaments that can
be managed ranges from 103 to 104. Since usually N is
smaller than N ðphysÞ, a scaling law for the relaxation time is
needed in order to infer the correct value of the relaxation
time from the simulated data. In the limit N !1 the
charge distribution becomes continuous and the mean field
theory is recovered. Starting from Landau’s kinetic theory,
we have obtained a formula for the scaling law towards the
MB equilibrium; the law has been confirmed by numerical
simulations. Once the calibration is made measuring the
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relaxation time in a particular case (the calibration point),
the scaling law provides the correct dependence of the
collisional relaxation time from the system parameters
(perveance, bare tunes, emittances and number of charged
filaments). We introduce an equilibration time tEQ defined
as the characteristic time required for the horizontal and
vertical temperatures of the system to equalize. In the
presence of instabilities and in the vicinity of resonances,
the equilibration is driven by collective dynamical pro-
cesses rather than by collisions and usually tEQ5trelax. In
this case the equilibration process is characterized by a time
scale of Oð1Þ compared to the proper dynamic time of the
system (dynamic equilibration process). On the other hand,
far enough from this chaotic regime, collisions govern the
equilibration process; tEQ and trelax appear to be strictly
related and the equality tEP ’ trelax is supported by an
analysis of the distribution and by the good agreement of
the measured t

EQ
with the scaling law obtained from

Landau’s kinetic theory (thermodynamic equilibration). In
this paper we show that a third scenery is also possible.
When a low-order resonance (e.g. the 2:2 Montague
resonance) is approached, we observe an equilibration
process which has a clear collisional origin, but substantial
deviations from Landau’s description are observed. We will
show that this hybrid regime (dynamic–thermodynamic
equilibration) is due to an interplay between collisions and
the collective dynamics.

The collective instabilities are well known for a beam in a
constant focusing channel [2]. In the case of a periodic
focusing lattice, the analysis of the second order moments
of the beam phase space distribution (envelope equation)
shows the presence of unstable regions even in the case of a
symmetric cell [3]. It is therefore relevant to investigate the
stability properties of higher order collective modes. We
have shown that the linear equations describing the
evolution of the moments of a small perturbation on a
KV beam can be written explicitly and, by applying
Floquet theory, the stability condition can be worked out.
We have found that for a beam in a symmetric FODO cell
(o0 and o being, respectively, the bare and the depressed
phase advances) the sextupolar and octupolar perturba-
tions are unstable in ‘‘tongue-like’’ regions of the para-
meter space ðo0;o=o0Þ, similar to the ones where envelope
parametric instabilities appear. Their union provides an
instability domain where the PIC simulations show a
significant emittance change. The region where the growth
rate is large is similar to the region where emittance growth
has been observed in experiments with a periodic lattice of
identical electric quadrupoles [4].

2. The collisional model

We consider a coasting beam in a constant focusing
channel and we assume that the charges are organized into
N charged filaments parallel to the reference orbit.
Denoting by ri ¼ ðxi; yiÞ the transversal displacement of
filament i and by pi � dri=ds its conjugated momentum, the

corresponding Hamiltonian is given by

H ¼
XN

i¼0
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where rij is the distance between filaments i and j, x is the
perveance, ox0=oy0 are the bare phase advances (per unit
length) and N is the number of filaments. The perveance
does not depend on N and can be written (in the no-
relativistic case) as x ¼ 2ðq=mÞðQ=v20Þ, where q and m are
the charge and the mass per unit length of the filament
whose ratio is equal to the ratio of the charge to mass of the
single ion, and Q is the total charge per unit length in the
beam. The Hamilton equations of motion related to Eq. (1)
have been solved numerically on a parallel architecture by
using a symplectic integrator and an optimal algorithm for
the force field evaluation (the computational complexity
was lowered from OðN2Þ to OðN logNÞÞ [1,5]. In numerical
simulations it has been shown that an initial Vlasov stable
distribution r0ðxÞ, where x ¼ ðx; y; px; pyÞ, relaxes to the
MB distribution according to an exponential law

rðx; sÞ ’ e�s=trelaxr0ðxÞ þ ð1� e�s=trelaxÞrMBðxÞ (2)

where the relaxation length trelax increases linearly with N

according to

trelax ¼ NC f ðx0; e; xÞ (3)

and C is a calibration constant (which may depend on the
type of the initial distribution r0), x0 ¼ ðo0x;o0yÞ and
e ¼ ð�x; �yÞ, where �x; �y are the r.m.s. emittances. The form
of the function f will be discussed later on in this paper. For
an isotropic beam (o0x ¼ o0y and �x ¼ �y), starting from
an initially matched distribution, the second order mo-
ments remain constant and the relaxation process can be
detected by looking at the distribution itself or at higher
order moments of the distribution. For an anisotropic non-
equipartitioned beam, the second order moments are no
longer constant and can be used to analyze the relaxation
process towards the MB equilibrium, provided that we are
far from instabilities. In this case the (spatially averaged)
instantaneous temperatures associated with the horizontal
and the vertical degrees of freedom, defined as the
incoherent part of the kinetic energy, are given by

kBTxðsÞ �
�2x
hx2i
¼ hp2

xi �
hxpxi

2

hx2i
. (4)

A similar expression holds for kBTy.

3. Kinetic theory

In the mean field approximation (neglecting collisions)
the dynamics of the system is described by the Vlasov
equation

qr
qs
þ ½r;H� ¼ 0; DV ðx; yÞ ¼ �4p

Z
rðx; sÞdpx dpy (5)
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