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Abstract

In order to study the dynamical behavior of atomic electrons interacting with strong fields, a semi-classical model is built from the Wave

Packet Molecular Dynamic model. In our calculations, the Gaussian Wave Packets approach has been improved by introducing

Hermite–Gaussian functions. Results are presented for laser–atom interaction at intensities where tunnel ionization plays an important role.
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1. Introduction

For several applications related to high energy density in
matter, one has to get an accurate description of the
dynamics of atomic electrons interacting with strong fields.
One case concerns laser–atom interaction as for example
when considering soft X-ray laser sources produced by
focusing an intense laser beam inside a Xenon gas in
Ref. [1]. Another case is related to high energy collisions
between partially ionized heavy ions as encountered in
heavy ion fusion [2]. In both cases the strength and the
duration of the time dependent fields are so large that
perturbative theories cannot yield accurate results, there-
fore non-perturbative models are required. Several non-
perturbative calculations have been proposed in which the
time dependent Schrödinger equation (TDSE) is solved
either using a grid in real or in Fourier space or also by
using an atomic basis. In our calculations the starting point
has been the semi-classical approximation in which the
perturbation potential can be large but its space variation
on a scale length given by the wave function is assumed to

be small. When considering only first and second order
derivative of the potentials, Gaussian Wave Packet (GWP)
become exact solution of the TDSE. In Ref. [3], thermo-
dynamic properties of dense plasmas were studied using a
time dependent variational principle (TDVP) [4] together
with GWP leading to Wave Packet Molecular Dynamic
(WPMD) calculations. The objective of the present work is
to apply WPMD for studying dynamical properties of
atomic electrons. Results presented below show that
WPMD with GWP yield realistic results when the semi-
classical approximation is valid, as expected. It corre-
sponds to very strong perturbation, for which the energy
gain by the electron is large. To extend the validity domain
of the GWPMD calculations we have introduced a sum of
Hermite–Gaussian functions. In the general case WPMD
with Hermite Gaussian Wave Packet (HGWP) lead to
calculations that are difficult to solve. We show that the
numerical complexity can be strongly reduced by consider-
ing only a reduced ensemble of HGWP (R-HGWP). In the
present work we will compare the results obtained using
either spherical GWP (S-GWP), GWP or R-HGWP for
calculating ground state properties of atom and molecules
and their dynamical evolution when interaction with a high
intensity laser field or with an energetic ion. Atomic units
will be used, excepted when specified.
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2. Time dependent variational principle

Let us consider a physical system characterized by a
Hamiltonian Ĥ and a wave function j, that depends on
several parameters fqig. Following Ref. [4] we define a
Lagrangian through

Lðqj ; _qjÞ ¼
X

j

pjðqjÞ _qj �HðqjÞ (1)

where pj ¼ hjjiq=qqjjji is the conjugated momentum of
the introduced parameter qj, and H ¼ hjjĤjji is the semi-
classical Hamiltonian. Our quantum problem originally
driven by the TDSE could now be treated by classical
Lagrange equations on Lðq; _qÞ.

From the Lagrange equations onL, one gets the dynamical
equations of the coordinates fqjg with the help of the so-called
norm-matrix N defined by Nj;k ¼ qpj=qqk � qpk=qqj:X

j

Nj;k _qj ¼
qH
qqk

) _qj ¼
X

k

N�1
k;j

qH
qqk

. (2)

N invertibility depends on j choice. If N is invertible, we
obtain a set of coupled differential equations. N is easily
invertible when conjugated moments are by construction
parameters, which is the case with GWP jG:

jGð~q;~xÞ ¼
Y

j¼x;y;z

oj

p

� �1=4
e�ðoj=2þigjÞðxj�rjÞ

2

eipjðxj�rj Þ. (3)

We have studied the different following shapes:

� SGWP: Width variations are identical in each direction.
8j;oj ¼ o; gj ¼ g. We have 8 degrees of freedom. This
shape was precedently used in Refs. [3,5].
� GWP, jG as written above in Eq. (3). The problem

dimension is 12.
� HGWP: jHG. The wave function jHG is written as a

linear combination of Hermite–Gauss functions:

jHGðci;j;k;~q;~xÞ ¼
X

i;j;k2A

ci;j;kci;j;kð~q;~xÞ (4)

where the Hermite–Gauss functions cnx;ny;nz
are

cnx;ny;nz
ð~q; ~xÞ ¼

Y
j¼x;y;z

hnj
ð
ffiffiffiffiffi
oj
p
ðxj � rjÞÞ

�e� oj=2þigjð Þðxj�rj Þ
2

eipj ðxj�rjÞ. ð5Þ

The hnj
are the normalized Hermite polynomials of degree

nj and A the set of allowed integer triplet ði; j; kÞ. In most of
the presented results we have use a reduce ensemble of ci;j;k

in order to reduce the numerical effort in the N inversion.
The basic idea is to limit the dependency of the conjugated
moments of ~r, ~p, gxi

and oxi
on the coefficients ci;j;k. It has

been obtained by choosing the set A such that

ci;j;kci�1;j;k ¼ ci;j;kci�2;j;k ¼ 0

ci;j;kci;j�1;k ¼ ci;j;kci;j�2;k ¼ 0

ci;j;kci;j;k�1 ¼ ci;j;kci;j;k�2 ¼ 0. ð6Þ

For example, for ði; j; kÞ 2 ½0; 2�3, the following table lists
the triplet for the non-zero coefficient:

i j k i j k

0 0 0 2 2 0
1 1 0 2 0 2
1 0 1 0 2 2
0 1 1

When condition (6) is satisfied, the norm-matrix becomes
easily invertible. The problem dimension for the HGWP
calculations becomes 12þ card(A).

3. Ground state properties

Let us first consider the case of a spherical atomic
potential. The difference in the results obtained by the
different models are nearly independent of the specific form
of the atomic potential so that we choose the simple one
corresponding to atomic hydrogen. The stationary state of
the hydrogen atom is studied from semi-classical Hamilto-
nian HðqjÞ written as

HðqjÞ ¼ jðqj;~xÞ �
1

2

q2

q~x2
�

1

j~xj

����
����jðqj;~xÞ

� �
. (7)

Minimization of HðqjÞ yields the (1s) ground state,
which has been calculated using either the GWP or the
HGWP representation. Fig. 1. shows the minimum energy
vs. the wave function width o obtained with HGWP for
different sets An ¼ fði; j; kÞji þ j þ kpng.
From this figure, we can observe that GWP (n ¼ 0)

yields a minimum energy of �0:424 obtained at o�0:57,
i.e. 16% higher than the exact value. By adding HGWP of
higher degrees, we get closer to the exact result of �0:5.
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Fig. 1. Minimum energy by minimization of H obtained with HGWP

wave function ansatz. The wave function is written as a linear combination

of ci;j;k where i þ j þ kpn. Note that with n ¼ 0 we retrieve the GWP

assertion.
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