

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research A 567 (2006) 246–249

www.elsevier.com/locate/nima

Study of avalanche microchannel photodiodes for use in a scintillating fiber muon beam profile monitor

A. Stoykov^a, R. Scheuermann^{a,*}, T. Prokscha^a, Ch. Buehler^a, Z.Ya. Sadygov^b

^a Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^bJoint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

Available online 12 June 2006

Abstract

We report a study on the use of avalanche microchannel photodiodes (AMPDs) with sensitive area 0.75×0.75 mm², density of microchannels $10^4/\text{mm}^2$, and maximum gain of 3×10^4 , in a scintillating fiber muon beam detector. We show that an AMPD-based detector is efficient for 29 MeV/c muons at count rates up to several MHz and is operational in magnetic fields up to a few Tesla. \odot 2006 Elsevier B.V. All rights reserved.

PACS: 29.40.Gx; 29.40.Mc; 85.60.Dw

Keywords: Avalanche photodiode; Scintillating fiber; Muon beam

1. Introduction

The μ SR [1] spectrometers of the Laboratory for Muon Spectroscopy at the Paul Scherrer Institut in Villigen, Switzerland are fed by beams of polarized muons provided by the Swiss Muon Source $(S \mu S)$ to study the properties of condensed matter. Setting-up and optimization of the performance of the spectrometers requires a detector capable to measure the profiles of high intensity nonrelativistic muon beams and to be operational in high magnetic fields.

These requirements can be met in a multichannel detector realized as a grid of scintillating fibers spaced along the x and y directions perpendicular to the beam axis z. Such a detector probes the beam intensity at coordinates x_i and y_i of the fibers or at fiber intersection points (x_i, y_i) . As photosensors for the fiber readout one could consider multianode photomultiplier tubes (PMTs) or avalanche photodiodes. The operation of a PMT-based device in a high magnetic field would require the use of long fiber light guides and would make the device quite bulky. Avalanche photodiodes (APDs) are known to be insensitive to magnetic fields [2] and, therefore, allow a much more

0168-9002/\$ - see front matter \odot 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.nima.2006.05.102

compact design of the device. The APDs produced nowadays range from the linear-mode devices with characteristic values of gain \sim 100 to the Geiger-mode multipixel APDs with pixel density $\sim 10^3$ mm⁻² and gain \sim 10⁶ [3].

An Avalanche Microchannel Photodiode (AMPD) of type R8 [4] developed in the Joint Institute for Nuclear Research in Dubna, Russia, is a Geiger-mode device with a microchannel (micropixel) density of 10^4 mm⁻². Its main features are a high photon detection efficiency $(\sim 15\%$ at 430 nm) and a rather high (\sim 3 × 10⁴) maximum gain [3].

In this work, we study the performance of a scintillating fiber detector module based on a 0.75×0.75 mm² active area AMPD for detection of 29 MeV/c muons in magnetic fields up to 4.8 T and at the event rates up to 10^7 s⁻¹.

2. Measurements

The high gain of the AMPD allows to use it with a fast voltage-sensitive amplifier. The amplifier scheme (see Fig. 1) is based on the MAR monolithic amplifiers from mini-circuits [5]. The amplifier has a gain of \sim 250, bandwidth \sim 250 MHz, and input impedance \sim 200 Ω . The AMPD is mounted directly on the amplifier board in order to minimize the noise pickup. A test detector module was

^{*}Corresponding author. Tel.: $+41563103465$; fax: $+41563103131$. E-mail address: robert.scheuermann@psi.ch (R. Scheuermann).

Fig. 1. Scheme of the broad-band amplifier for use with an AMPD.

build by coupling a 70 mm long 1 mm \times 1 mm square crosssection BCF-10 scintillating fiber [6] (peak emission at 432 nm) directly to the AMPD. The detector was placed at the center of a 5T superconducting solenoid (warm bore diameter 20 cm, length 1 m) set up in the π E3 muon beam line of the SuS. For recording and analyzing the detector signals a Lecroy WavePro 960 digital oscilloscope was used. All the measurements were performed at a bias voltage $U_{bias} = 101.5 \text{V}$ with a biasing resistor $R_{bias} =$ $20 \text{ k}\Omega$. The oscilloscope screenshots for the 1e (dark) and muon (μ) signals are shown in Fig. 2. The gain of the AMPD is high enough to increase the 1e-pulse height above the amplifier noise level.

Fig. 3 shows the amplitude distributions of 1e and muon signals obtained in zero and 4.8 T magnetic fields. The average number of photoelectrons created per muon hitting the fiber of about 55 is deduced from the ratio A/A_{1e} , where A and A_{1e} are the mean values for the muon and 1e signal amplitudes. (Note that there is a 50% light loss due to the mismatch of the AMPD active area and the fiber cross-section.) The amplitudes of the muon as well as of 1e signals decrease slightly (by about 10%) in 4.8 T magnetic field as compared to zero field. This effect is attributed to the change of the performance of the amplifier, rather than of the AMPD, in the magnetic field: about the same field dependence of the amplifier output signal was observed when the input signal was provided by a pulse generator.

The maximum muon rate per fiber in these measurements was 6×10^5 s⁻¹. At this rate the signal amplitude A decreases by about 10% compared to its value A_0 at low rates ($\leq 10^4$ s⁻¹), see Fig. 4a. The rate dependence of the signal amplitude is due to the fact that the gain M of each single pixel of the detector depends on the rate n_1 of pulses counted by this individual pixel (the 1e pulses). The following factors contribute to the $M(n_1)$ -dependence: (a) DC voltage drop on the biasing resistor (this effect can be minimized by choosing a small value of R_{bias}); (b) finite ''recovery'' time of the pixel [7], i.e., the time required to recharge the pixel capacitance following the 1e-pulse. Provided the dependence $M(n_1)$ is known, the value of M can be predicted for signals with amplitude Λ and rate n , based on

Fig. 2. Oscilloscope screenshots of 1e signals (top: horizontal scale is 5 ns/ div, vertical scale is 5 mV/div and muon signals (bottom: 10 ns/div , 100 mV/div).

where $n_{1,0}$ is the minimum ("dark count") rate of pulses per pixel at a given temperature; A_{1e} is the amplitude of 1epulses; the ratio A/A_{1e} gives the number of photoelectrons per pulse of amplitude A; $N_{pix} = 5625$ is the total number of pixels per sensitive area of the AMPD.

The dependence $M(n_1)$ was measured as follows. First the AMPD current I caused by illumination with continuous light of a given intensity was determined. Then the amplitude A of the (amplified) AMPD output signal at this given current was measured by additionally illuminating the AMPD with a pulsed LED of repetition rate 1 kHz and an amplitude $A \ll A_{1e} \cdot N_{pix}$ (i.e., generating much less than one photoelectron per pixel). For biasing and measurement of the AMPD current a KEITHLEY 6487 picoammetervoltage source was used. The temperature during the measurements was about 15 K above room temperature due to power dissipation in the amplifier circuits. The rate of 1e pulses per pixel then is obtained as

$$
n_1 = I/(eMN_{\text{pix}}),\tag{2}
$$

where *e* is the electron charge; $M = M_0 \cdot (A/A_0)$, M_0 and A_0 are the values of the gain and the signal amplitude at $I = I_0$ (I_0 is the dark AMPD current). At $I \sim I_0$ the gain was determined as $M_0 \approx 1.7 \times 10^4$.

Download English Version:

<https://daneshyari.com/en/article/1831202>

Download Persian Version:

<https://daneshyari.com/article/1831202>

[Daneshyari.com](https://daneshyari.com)