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Abstract

In a neutron lifetime experiment conducted at the National Institute of Standards and Technology, protons produced by neutron

decay events are confined in a proton trap. In each run of the experiment, there is a trapping stage of duration t. After the trapping stage,

protons are purged from the trap. A proton detector provides incomplete information because it goes dead after detecting the first of any

purged protons. Further, there is a dead time d between the end of the trapping stage in one run and the beginning of the next trapping

stage in the next run. Based on the fraction of runs where a proton is detected, I estimate the trapping rate l by the method of maximum

likelihood. I show that the expected value of the maximum likelihood estimate is infinite. To obtain a maximum likelihood estimate with

a finite expected value and a well-defined and finite variance, I restrict attention to a subsample of all realizations of the data. This

subsample excludes an exceedingly rare realization that yields an infinite-valued estimate of l. I present asymptotically valid formulas for

the bias, root-mean-square prediction error, and standard deviation of the maximum likelihood estimate of l for this subsample. Based

on nominal values of l and the dead time d, I determine the optimal duration of the trapping stage t by minimizing the root-mean-square

prediction error of the estimate.

Published by Elsevier B.V.

PACS: 21.10.Tg; 24.80+y; 14.20.Dh; 02.50�r

Keywords: Lifetimes; Nuclear tests of fundamental interactions and symmetries; Properties of protons and neutrons; Probability theory; Stochastic

processes; Statistics

1. Introduction

Ion traps play a key role in fundamental physics
experiments [1]. In this paper, I focus on statistical methods
for uncertainty analysis and planning of proton trap
neutron lifetime experiments [1–5] and related experiments
such as Ref. [6]. When a neutron decays, it produces a
proton, an electron and an antineutrino. An accurate
determination of the mean lifetime of the neutron is
critically important for testing the fundamental theories of
physics [7]. Further, the mean lifetime of the neutron is an
important parameter in the astrophysical theory of big
bang nucleosynthesis [8]. In a proton trap neutron lifetime
experiment performed at the National Institute of Stan-

dards and Technology (NIST), a beam of neutrons passes
through a detection volume. Based on measurements of the
neutron flux and the proton production rate, one measures
the mean lifetime of the neutron. Each run of the
experiment consists of trapping stage where protons are
confined in a trap [2–5], and a detection stage. The detector
provides incomplete information because it goes dead after
detecting the first proton. Based on the number of runs
where a proton is detected, one can estimate the proton
trapping rate.
In earlier work [9], this estimation problem was studied

using a Bayesian method. Given a particular realization of
the data (the number of runs where at least one ion (proton
in this paper) is trapped), formulas for the posterior mean
and posterior variance of the ion trapping rate were
presented based on a prior probability model for the
trapping rate. In this work, I estimate the trapping rate by
the method of maximum likelihood and focus on the
statistical properties of this estimate. I neglect physical
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sources of systematic error due to effects such as a time
varying proton trapping rate or fluctuations in the actual
trapping stage interval about the nominal value sought by
the experimenter.

In Section 2, I demonstrate that the bias (expected value
minus true value) and variance of the maximum likelihood
estimate of the trapping rate l are infinite. This is so
because a rare realization of the data yields an infinite
estimate of l. This technical problem can be dealt with in
various ways. One could quantify uncertainty by con-
structing confidence intervals of finite width even though
the variance of the estimate is infinite. Another approach
would be to introduce a stopping rule so that the
experiment is continued until no protons are trapped in
at least one run. I do not pursue either of these approaches
here. Instead, I restrict the sample space to include only
realizations of data where one observes at least one run
where no protons are trapped. For realizations of data in
this subsample, the maximum likelihood estimate has finite
first and second moments. In Section 3, I derive asympto-
tically valid formulas for the bias, variance, and mean-
square-error of a maximum likelihood estimate of the
proton trapping rate computed from this subsample. In
general, one expects estimates that are nonlinear functions
of the observed data, such as the maximum likelihood
estimate of the trapping rate, to be biased [10]. In Section 4,
where, based on nominal values of trapping rate and dead
time, I determine the trapping time that minimizes the root-
mean-square prediction error of the maximum likelihood
estimate of l in the subsample of interest.

2. Statistical model

In a simulated proton trapping experiment there are
many runs. During each run, I assume that the duration of
the proton trapping stage t is an adjustable constant
that is known with negligible uncertainty. During the
trapping stage, I assume that protons are trapped at a
constant rate l. Further, I restrict attention to the case
where l40. After the trapping stage, protons are purged
from the trap. A proton detector provides incomplete
information because it goes dead after detecting the
first of any purged protons. Further, there is a fixed dead
time d between the end of the trapping stage in one run and
the beginning of the next trapping stage in the next run. I
assume that d is known with negligible uncertainty. If the
total time of the experiment is T, the total number of runs
is

Nrun ¼ INT
T

tþ d

� �
. (1)

Above, the function INTðxÞ rounds the continuous
variable x down to the nearest integer. Let nþ be the
observed number of runs where at least one proton is
trapped. I model the number of protons trapped during
any run as a realization of a Poisson process with expected
value lt. Hence, the probability that no ion is trapped for a

given run is

p0 ¼ expð�ltÞ. (2)

The maximum likelihood estimate of p0 is

p̂0 ¼ 1�
nþ

Nrun
(3)

where nþ is the number of runs where at least one proton is
trapped. Thus, the maximum likelihood estimate of l is

l̂ ¼ �
1

t
ln p̂0 ¼ �

1

t
ln 1�

nþ

Nrun

� �
. (4)

Since nþ is a binomial random variable, the probability
that nþ ¼ k is PðkÞ, where

PðkÞ ¼
Nrun!

ðNrun � kÞ!k!
ð1� p0Þ

kpNrun�k
0 . (5)

Hence, the expected value of the maximum likelihood
estimate of l is

Eðl̂Þ ¼ �
1

t

XNrun

k¼0

PðkÞ ln 1�
k

Nrun

� �
. (6)

Similarly, the expected squared value of the estimate is

Eðl̂
2
Þ ¼

1

t2
XNrun

k¼0

PðkÞ ln 1�
k

Nrun

� �� �2

. (7)

For l40, PðNrunÞ ¼ ð1� p0Þ
Nrun40, and both the expected

value (first moment) and expected squared value (second
moment) of l̂ are infinite.The variance of l̂, VARðl̂Þ, is not
defined because

VARðl̂Þ ¼ Eðl̂
2
Þ � ðEðl̂ÞÞ2 (8)

and both terms on the right-hand side of Eq. (8) are
infinite.
To ensure that both Eðl̂Þ and Eðl̂

2
Þ are finite, I restrict

the sample space to realizations of the data where
nþoNrun. From a practical point of view, this means that
realizations of data where nþ ¼ Nrun would be ignored.
For neutron lifetime experiments of current interest, the
probability that nþ ¼ Nrun is negligible provided that t is
judiciously chosen. Hence, this subsampling restriction
does not significantly affect data collection procedures for
neutron lifetime experiments of current interest. In this
subsample, the discrete probability density function for
allowed realizations of nþ ¼ 0; 1; . . . ;Nrun � 1 is P�ðkÞ,
where

P�ðkÞ ¼
PðkÞ

1� PðNrunÞ
. (9)

For this subsample, the first two moments of the maximum
likelihood estimate are

Eðl̂Þ ¼ �
1

t

XNrun�1

k¼0

P�ðkÞ ln 1�
k

Nrun

� �
(10)
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