

ScienceDirect

Nuclear Instruments and Methods in Physics Research A 570 (2007) 330-335

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH

www.elsevier.com/locate/nima

Study of radiation damage induced by 24 GeV/c and 26 MeV protons on heavily irradiated MCz and FZ silicon detectors

V. Radicci^{a,*}, L. Borrello^c, M. Boscardin^d, M. Bruzzi^b, D. Creanza^a, G.F. Dalla Betta^e, M. de Palma^a, E. Focardi^b, A. Macchiolo^b, N. Manna^a, D. Menichelli^b, A. Messineo^c, C. Piemonte^d, A. Pozza^d, M. Scaringella^b, G. Segneri^c, D. Sentenac^c, N. Zorzi^d

> ^aINFN and Dipartimento Interateneo di Fisica, Bari, Italy ^bINFN and Università degli Studi di Firenze, Italy cINFN and Università degli Studi di Pisa, Italy ^dITC-IRST Trento, Povo, Trento, Italy ^eDipartimento di Informatica e Telecomunicazioni Universita' di Trento, Italy

> > Available online 2 October 2006

Abstract

The aim of this work is the development of radiation hard detectors for very high luminosity colliders. A growing interest has been recently focused on Czochralski silicon as a potentially radiation-hard material. We report on the processing and characterization of micro-strip sensors and pad detectors produced by ITC-IRST on n- and p-type magnetic Czochralski and float zone silicon. Part of the samples has been irradiated using 24 GeV/c protons (CERN-Geneva), while another part has been irradiated with 26 MeV protons (FZK-Karlsruhe) up to a fluence of 5×10^{15} 1 MeV-neutron-equivalent/cm². All the samples have been completely characterized before and after irradiation. Their radiation hardness as a function of the irradiation fluence has been established in terms of breakdown voltage, leakage current and evaluating the more relevant mini-sensor parameter variation. Moreover, the time evolution of depletion voltage, leakage current and inter-strip capacitance has been monitored in order to study their annealing behavior and space charge sign inversion effects.

© 2006 Elsevier B.V. All rights reserved.

PACS: 20.40 Gx: 29.40 Wk: 61.82 Fk: 61.80-x

Keywords: Silicon detectors; Radiation damage; Micro-strip detectors

1. Introduction

ATLAS and CMS, two multipurpose high energy physics experiments, are under construction at the Large Hadron Collider (LHC) at CERN. LHC is a large p-p accelerator with a beam energy of 7 TeV and a designed peak luminosity of 10^{34} cm⁻² s⁻¹ [1]. The tracker detectors of both experiments have been designed to work in a very hostile radiation environment with a fast hadron fluence of 3×10^{15} 1 MeV-neutron-equivalent/cm² (n_{eq}/cm²) expected at the minimum instrumented distance from the collision point (~4 cm). Detector technology has been developed to

ensure the survival of these systems to an integrated luminosity of 500 fb⁻¹, corresponding to 10 years of LHC operation [2].

A planned upgrade of the LHC collider (SLHC project [3]) will increase both the luminosity up to a final value of 10^{35} cm⁻² s⁻¹ and the beam energy up to 12.5 TeV. Tracker detectors of SLHC experiments should maintain their performance up to the maximum expected fast hadron fluence: $1.6 \times 10^{16} \, n_{eq}/cm^2$ at 4 cm from the beam line and $8 \times 10^{14} \, n_{eq}/cm^2$ at an intermediate distance of 22 cm. Silicon detectors and in particular micro-strip sensors can still be considered a viable solution in the intermediate and outer tracker regions, provided that an improvement of their radiation hardness to fluences of the order of $10^{15} \, n_{eq}/\text{cm}^2$ can be achieved. For this purpose the

^{*}Corresponding author. Tel.: +39 080 544 2432; fax: +39 080 544 2470. E-mail address: Valeria.Radicci@ba.infn.it (V. Radicci).

activity of the SMART project, a collaboration of Italian research institutes funded by the INFN, has been focused on the development of radiation hard silicon position sensitive detectors for SLHC in the framework of CERN-RD50 collaboration [4].

Previous studies highlighted the beneficial effect in terms of radiation hardness of FZ silicon material enriched with oxygen atoms (DOFZ—diffusion oxygenated FZ silicon) [5]. Nowadays, with the magnetic Czochralski (MCz) growth technology it is possible to produce Si devices with an intrinsically high oxygen content and with a resistivity suitable for particle detector applications [6].

Furthermore, silicon detectors built on p-type substrates (n + micro-strip) implants on p substrate, i.e., n + on p) is a possible radiation harder solution compared to the more common p + -on-n technique, mainly for two reasons: first the p substrate, at any dose after irradiation, does not show type inversion, preserving the highest electrical field on the strip side, and second the n + implants on p substrate collect electrons which have, with respect to holes, an higher mobility and a lower trapping probability, thus improving charge collection efficiency.

In this paper we report on the results achieved with test structures and micro-strip detectors processed on MCz and FZ substrates (n and p type) heavily irradiated with protons of two different energies.

2. Samples and irradiation campaigns

The wafer processing has been performed by ITC-IRST (Trento, Italy) in two successive runs, using both MCz and FZ 4 inch. silicon wafers for comparison. In the first run (RUN-I) wafers from n-type material have been processed while on the second one (RUN-II) p-type substrates have been manufactured; on both cases the same mask set has been used. For RUN-II the p-spray technique (uniform implantation) [7] is used to obtain isolation between n+ implants with two different implantation doses, namely $3 \times 10^{12} \,\mathrm{cm}^{-2}$ (low p-spray) and $5 \times 10^{12} \,\mathrm{cm}^{-2}$ (high pspray). The wafers produced for RUN-I (p on n) on MCz substrates have a resistivity $\rho \gtrsim 500 \,\Omega$ cm, a thickness of $300 \,\mu \text{m}$ and $\langle 100 \rangle$ crystal orientation, while the ones produced on FZ materials are of type (111), have a resistivity of around $6 k\Omega$ cm and a thickness of $300 \mu m$. For RUN-II (n on p) all the wafers are of $\langle 100 \rangle$ type and have a substrate resistivity $\geq 2 k\Omega cm$; the thickness is 300 µm for MCz substrates and 200 µm for FZ silicon.

Each wafer hosts various test structures and ten minisensors with equal active area ($\sim 0.5 \times 5 \,\mathrm{cm^2}$) but with different geometry, to investigate the dependence of the detector performance on the design parameters (see Table 1). Further details can be found in Refs. [8–10].

The irradiation of the devices was performed with protons of different energies in order to compare the different radiation damages. The first campaign was carried out at the CERN-SPS facility with $24 \, \text{GeV}/c$ protons and at fluences up to $3 \times 10^{15} \, \text{n}_{\text{eg}}/\text{cm}^2$, the second

Table 1 Strip parameters of the ten mini-sensors in the wafer

$\mu\text{-strip }\#$	Pitch	Implant width	Poly-width	Al width
S1	50	15	10	23
S2	50	20	15	28
S3	50	25	20	33
S4	50	15	10	19
S5	50	15	10	27
S 6	100	15	10	23
S7	100	25	20	33
S 8	100	35	30	43
S9	100	25	20	37
S10	100	25	20	41

All the dimensions are in μm . The devices are AC coupled and microstrips are biased through $600 \, k\Omega$ poly-silicon resistors.

one was performed at the Compact Cyclotron of the Forshungszentrum in Karlsruhe (Germany) with 26 MeV protons at fluences up to $2 \times 10^{15} \, n_{eg}/cm^2$.

3. Pre-irradiation characterization

All the devices were completely characterized before and after irradiation, following the standard procedures defined within the RD50 Collaboration. The leakage current I_{leak} and the back-plane capacitance C_{back} measurements were performed both on diodes and on micro-strip sensors in order to evaluate the breakdown performance and the depletion voltage. The strip isolation was checked by means of the inter-strip capacitance C_{int} and the inter-strip resistance R_{int} measurements.

Pre irradiation measurements show that all n-type devices (FZ and MCz) show high breakdown voltages ($V_{\rm bd} > 600 \, \rm V$) and in average all the sensors have a leakage current density around $J \sim 1.4 \, \rm nA/mm^3$ at 400 V, well beyond their depletion voltage.

Different performance has been observed for p-type sensors that show a low breakdown voltage, in particular for sensors processed with high p-spray dose. Moreover, in detectors with larger pitch (100 μ m) the breakdown is even lower than 70 V (big dot curves in Fig. 1). A simulation of these devices [11] has identified as responsible for the avalanche breakdown at low bias voltage the high values of the electric field, localized between the n+ implant and the p-spray layer.

A local variation of the depletion voltage $V_{\rm dep}$ in the MCz material is also measured, especially for p-type wafers, due to the nonuniform oxygen distribution that leads to a spread in the thermal donor activation in the wafer after the processing 10.

For n-type micro-strip sensors a typical behavior of $C_{\rm int}$ as a function of the bias voltage is observed, with a saturation value in over-depletion condition ranging from 0.5 to 1.2 pF/cm, in agreement with the different device geometries.

Download English Version:

https://daneshyari.com/en/article/1831598

Download Persian Version:

https://daneshyari.com/article/1831598

Daneshyari.com